dc.contributor.author
Pasternack, Alexander
dc.contributor.author
Bhend, Jonas
dc.contributor.author
Liniger, Mark A.
dc.contributor.author
Rust, Henning W.
dc.contributor.author
Müller, Wolfgang A.
dc.contributor.author
Ulbrich, Uwe
dc.date.accessioned
2018-06-08T10:24:20Z
dc.date.available
2018-06-05T11:10:13.891Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20376
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23679
dc.description.abstract
Near-term climate predictions such as decadal climate forecasts are
increasingly being used to guide adaptation measures. For near-term
probabilistic predictions to be useful, systematic errors of the forecasting
systems have to be corrected. While methods for the calibration of
probabilistic forecasts are readily available, these have to be adapted to the
specifics of decadal climate forecasts including the long time horizon of
decadal climate forecasts, lead-time-dependent systematic errors (drift) and
the errors in the representation of long-term changes and variability. These
features are compounded by small ensemble sizes to describe forecast
uncertainty and a relatively short period for which typically pairs of
reforecasts and observations are available to estimate calibration parameters.
We introduce the Decadal Climate Forecast Recalibration Strategy (DeFoReSt), a
parametric approach to recalibrate decadal ensemble forecasts that takes the
above specifics into account. DeFoReSt optimizes forecast quality as measured
by the continuous ranked probability score (CRPS). Using a toy model to
generate synthetic forecast observation pairs, we demonstrate the positive
effect on forecast quality in situations with pronounced and limited
predictability. Finally, we apply DeFoReSt to decadal surface temperature
forecasts from the MiKlip prototype system and find consistent, and sometimes
considerable, improvements in forecast quality compared with a simple
calibration of the lead-time-dependent systematic errors.
en
dc.format.extent
18 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
forecasting systems
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie
dc.title
Parametric decadal climate forecast recalibration (DeFoReSt 1.0)
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Geosci. Model Dev. 11 (2018), 1, S. 351-368
dcterms.bibliographicCitation.doi
10.5194/gmd-11-351-2018
dcterms.bibliographicCitation.journaltitle
Geoscientific Model Development
dcterms.bibliographicCitation.url
http://doi.org/10.5194/gmd-11-351-2018
refubium.affiliation
Geowissenschaften
de
refubium.affiliation.other
Institut für Meteorologie
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000029063
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009445
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1991-959X