dc.contributor.author
Wickenburg, Sebastian
dc.contributor.author
Lu, Jiong
dc.contributor.author
Lischner, Johannes
dc.contributor.author
Tsai, Hsin-Zon
dc.contributor.author
Omrani, Arash A.
dc.contributor.author
Riss, Alexander
dc.contributor.author
Karrasch, Christoph
dc.contributor.author
Bradley, Aaron
dc.contributor.author
Jung, Han Sae
dc.contributor.author
Khajeh, Ramin
dc.contributor.author
Wong, Dillon
dc.contributor.author
Watanabe, Kenji
dc.contributor.author
Taniguchi, Takashi
dc.contributor.author
Zettl, Alex
dc.contributor.author
Neto, A. H. Castro
dc.contributor.author
Louie, Steven G.
dc.contributor.author
Crommie, Michael F.
dc.date.accessioned
2018-06-08T10:19:06Z
dc.date.available
2017-01-12T11:43:52.189Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20236
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23541
dc.description.abstract
The ability to understand and control the electronic properties of individual
molecules in a device environment is crucial for developing future
technologies at the nanometre scale and below. Achieving this, however,
requires the creation of three-terminal devices that allow single molecules to
be both gated and imaged at the atomic scale. We have accomplished this by
integrating a graphene field effect transistor with a scanning tunnelling
microscope, thus allowing gate-controlled charging and spectroscopic
interrogation of individual tetrafluoro-tetracyanoquinodimethane molecules. We
observe a non-rigid shift in the molecule’s lowest unoccupied molecular
orbital energy (relative to the Dirac point) as a function of gate voltage due
to graphene polarization effects. Our results show that electron–electron
interactions play an important role in how molecular energy levels align to
the graphene Dirac point, and may significantly influence charge transport
through individual molecules incorporated in graphene-based nanodevices.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Tuning charge and correlation effects for a single molecule on a graphene
device
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Nature Communications. - 7 (2016), Artikel Nr. 13553
dc.identifier.sepid
55206
dcterms.bibliographicCitation.doi
10.1038/ncomms13553
dcterms.bibliographicCitation.url
http://www.nature.com/articles/ncomms13553
refubium.affiliation
Physik
de
refubium.mycore.fudocsId
FUDOCS_document_000000026131
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000007518
dcterms.accessRights.openaire
open access