dc.contributor.author
Conrad, Tim O. F.
dc.contributor.author
Genzel, Martin
dc.contributor.author
Cvetkovic, Nada
dc.contributor.author
Wulkow, Niklas
dc.contributor.author
Leichtle, Alexander
dc.contributor.author
Vybiral, Jan
dc.contributor.author
Kutyniok, Gitta
dc.contributor.author
Schütte, Christof
dc.date.accessioned
2018-06-08T10:18:19Z
dc.date.available
2017-05-23T09:15:30.731Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20213
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23519
dc.description.abstract
Background High-throughput proteomics techniques, such as mass spectrometry
(MS)-based approaches, produce very high-dimensional data-sets. In a clinical
setting one is often interested in how mass spectra differ between patients of
different classes, for example spectra from healthy patients vs. spectra from
patients having a particular disease. Machine learning algorithms are needed
to (a) identify these discriminating features and (b) classify unknown spectra
based on this feature set. Since the acquired data is usually noisy, the
algorithms should be robust against noise and outliers, while the identified
feature set should be as small as possible. Results We present a new
algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed
sensing that allows us to identify a minimal discriminating set of features
from mass spectrometry data-sets. We show (1) how our method performs on
artificial and real-world data-sets, (2) that its performance is competitive
with standard (and widely used) algorithms for analyzing proteomics data, and
(3) that it is robust against random and systematic noise. We further
demonstrate the applicability of our algorithm to two previously published
clinical data-sets.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
dc.subject
Feature selection
dc.subject
Classification
dc.subject
Compressed sensing
dc.subject
Mass spectrometry
dc.subject.ddc
500 Naturwissenschaften und Mathematik
dc.title
Sparse Proteomics Analysis – a compressed sensing-based approach for feature
selection and classification of high-dimensional proteomics mass spectrometry
data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
BMC Bioinformatics. - 18 (2017), 1, Artikel Nr. 160
dcterms.bibliographicCitation.doi
10.1186/s12859-017-1565-4
dcterms.bibliographicCitation.url
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1565-4
refubium.affiliation
Mathematik und Informatik
de
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.funding.id
02500
refubium.mycore.fudocsId
FUDOCS_document_000000027049
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000008225
dcterms.accessRights.openaire
open access