dc.contributor.author
Efrat, Alon
dc.contributor.author
Hoffmann, Frank
dc.contributor.author
Knauer, Christian
dc.contributor.author
Kriegel, Klaus
dc.contributor.author
Rote, Günter
dc.contributor.author
Wenk, Carola
dc.date.accessioned
2018-06-08T08:11:36Z
dc.date.available
2009-10-29T12:52:14.847Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/19538
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23185
dc.description.abstract
We address the problem of how to cover a set of "required points" by a small
number of "axis-parallel ellipses" that avoid a second set of "forbidden
points". We study geometric properties of such covers and present an efficient
randomized approximation algorithm for the cover construction. This question
is motivated by a special pattern recognition task where one has to identify
ellipse-shaped protein spots in two-dimensional electrophoresis images.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Algorithms and data structures
dc.subject
Computational geometry
dc.subject
Approximation algorithm
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Covering with ellipses
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik
refubium.mycore.fudocsId
FUDOCS_document_000000004104
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
01-8
refubium.mycore.derivateId
FUDOCS_derivate_000000000775
dcterms.accessRights.openaire
open access