dc.contributor.author
Braß, Peter
dc.contributor.author
Rote, Günter
dc.date.accessioned
2018-06-08T08:08:47Z
dc.date.available
2009-10-29T10:15:59.362Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/19447
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23100
dc.description.abstract
We show the following two results on a set on "n" points in the plane, tus
answering questions posed by Erdős and Purdy (1971). 1\. The maximum number of
triangles of maximum area (or of maximum perimeter) in a set of "n" points in
the plane is exactly "n". 2\. The maximum possible number of triangles of
minimum positive area in a set of "n" points in the plane is (-)(n²).
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Triangles of extremal area or perimeter in a finite planar point seit
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik
refubium.mycore.fudocsId
FUDOCS_document_000000004085
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
00-6
refubium.mycore.derivateId
FUDOCS_derivate_000000000771
dcterms.accessRights.openaire
open access