dc.contributor.author
Gräser, Carsten
dc.contributor.author
Kornhuber, Ralf
dc.contributor.author
Sack, Uli
dc.date.accessioned
2018-06-08T08:02:36Z
dc.date.available
2014-07-16T09:15:41.408Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/19249
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22911
dc.description.abstract
We present globally convergent nonsmooth Schur-Newton methods for the solution
of discrete vector-valued Cahn-Hilliard equations with logarithmic and
obstacle potentials. The method solves the nonlinear set-valued saddle-point
problems as arising from discretization by implicit Euler methods in time and
first order finite elements in space without regularization. Efficiency and
robustness of the convergence speed for vanishing temperature is illustrated
by numerical experiments.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
phase field models
dc.subject
variational inequalities
dc.subject
finite elements
dc.subject
convex minimization
dc.subject
descent methods
dc.subject
multigrid methods
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Nonsmooth Schur-Newton methods for vector-valued Cahn-Hilliard equations
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020607
refubium.mycore.reportnumber
A /01/2013
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /01/2013
refubium.mycore.derivateId
FUDOCS_derivate_000000003715
dcterms.accessRights.openaire
open access