dc.contributor.author
Friedland, Gerald
dc.contributor.author
Jantz, Kristian
dc.contributor.author
Lenz, Tobias
dc.contributor.author
Rojas, Raúl
dc.date.accessioned
2018-06-08T07:52:12Z
dc.date.available
2009-10-13T14:00:15.077Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18887
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22568
dc.description.abstract
This paper presents a practical approach for object extraction from still
images and video sequences that is both: simple to use and easy to implement.
Many image segmentation projects focus on special cases or try to use
complicated heuristics and classificators to cope with every special case. The
presented approach focuses on typical pictures and videos taken from everyday
life working under the assumption that the foreground objects are sufficiently
perceptual different from the background. The approach incorporates
experiences and user feedback from several projects that have integrated the
algorithm already. The segmentation works in realtime for video and is noise
robust and provides subpixel accuracy for still images.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::003 Systeme
dc.title
Extending the SIOX algorithm
dc.title.subtitle
alternative clustering methods, sub-pixel accurate object extraction from
still images, and generic video segmentation
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik
refubium.mycore.fudocsId
FUDOCS_document_000000003878
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
06-6
refubium.mycore.derivateId
FUDOCS_derivate_000000000733
dcterms.accessRights.openaire
open access