dc.contributor.author
Felsner, Stefan
dc.contributor.author
Wagner, Dorothea
dc.date.accessioned
2018-06-08T07:52:05Z
dc.date.available
2009-10-22T12:18:56.779Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18884
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22565
dc.description.abstract
The recognition complexity of ordered set properties is considered, i.e. how
many questions have to be asked to decide if an unknown ordered set has a
prescribed property. We prove a lower bound of Ω (n²) for properties that are
characterized by forbidden substructures of fixed size. For the properties
being connected, and having exactly k comparable paris we show that the
recogintion complexity is (n:2); the complexity of interval orders is exactly
(n:2) -1. Non-trivial upper bounds are given for being a lattice, containing a
chain of length k ≥ 2 and having width k.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
On the complexity of partial order properties
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik

refubium.mycore.fudocsId
FUDOCS_document_000000004025
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
99-19
refubium.mycore.derivateId
FUDOCS_derivate_000000000769
dcterms.accessRights.openaire
open access