dc.contributor.author
Pipping, Elias
dc.contributor.author
Sander, Oliver
dc.contributor.author
Kornhuber, Ralf
dc.date.accessioned
2018-06-08T07:51:52Z
dc.date.available
2014-07-16T09:11:21.284Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18878
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22559
dc.description.abstract
We propose a variational formulation of rate- and state-dependent models for
the dynamic sliding of a linearly elastic block on a rigid surface in terms of
two coupled variational inequalities. Classical Dieterich-Ruina models are
covered as special cases. We show existence and uniqueness of solutions for
the two spatial subproblems arising from time discretisation. Existence of
solutions to the coupled spatial problems is established for Dieterich's state
equation through a fixed point argument.We conclude with some numerical
experiments that suggest mesh independent convergence of the underlying fixed
point iteration, and illustrate quasiperiodic occurrence of stick/slip events.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Continuum mechanics
dc.subject
frictional contact problems
dc.subject
gradient flows
dc.subject
finite elements
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Variational formulation of rate- and state-dependent friction problems
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020606
refubium.mycore.reportnumber
A /03/2013
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /03/2013
refubium.mycore.derivateId
FUDOCS_derivate_000000003714
dcterms.accessRights.openaire
open access