dc.contributor.author
Valtr, Pavel
dc.date.accessioned
2018-06-08T07:42:24Z
dc.date.available
2009-03-12T09:04:42.106Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18542
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22238
dc.description.abstract
Two finite sets of points in the plane are called mutually avoiding if any
straight line passing through two points of anyone of these two sets does not
intersect the convex hull of the other set. For any integer n, we construct a
set of n points in general position in the plane which contains no pair of
mutually avoiding sets of size more than O (n). The given bound is tight up to
a constant factor, since Aronov et al. [AEGKKPS] showed a polynomial time
algorithm for finding two mutually avoiding sets of size (n) in any set of n
points in general position in the plane.
en
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
On mutually avoiding sets
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik
refubium.mycore.fudocsId
FUDOCS_document_000000001112
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
94-5
refubium.mycore.derivateId
FUDOCS_derivate_000000000265
dcterms.accessRights.openaire
open access