dc.contributor.author
Berninger, Heiko
dc.contributor.author
Kornhuber, Ralf
dc.contributor.author
Sander, Oliver
dc.date.accessioned
2018-06-08T07:35:18Z
dc.date.available
2014-07-16T07:17:17.323Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18284
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21991
dc.description.abstract
We derive and analyse a solver-friendly finite element discretiza- tion of a
time discrete Richards equation based on Kirchhoff transformation. It can be
interpreted as a classical finite element discretization in physical variables
with non-standard quadrature points. Our approach allows for non- linear
outflow or seepage boundary conditions of Signorini type. We show convergence
of the saturation and, in the non-degenerate case, of the discrete physical
pressure. The associated discrete algebraic problems can be formu- lated as
discrete convex minimization problems and, therefore, can be solved
efficiently by monotone multigrid methods. In numerical examples for two and
three space dimensions we observe L2-convergence rates of order O(h2) and
H1-convergence rates of order O(h) as well as robust convergence behaviour of
the multigrid method with respect to extreme choices of soil parameters.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Fast and robust numerical solution of the Richards equation in homogeneous
soil
dcterms.bibliographicCitation.url
http://www.math.fu-berlin.de/users/kornhube/archiv/BerningerSanderSINUM10.pdf
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020590
refubium.mycore.reportnumber
A /01/2010
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /01/2010
refubium.mycore.derivateId
FUDOCS_derivate_000000003698
dcterms.accessRights.openaire
open access