dc.contributor.author
Jouvet, Guillaume
dc.contributor.author
Gräser, Carsten
dc.date.accessioned
2018-06-08T07:29:33Z
dc.date.available
2014-07-16T09:19:27.356Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18076
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21788
dc.description.abstract
In this paper, we consider a model for the time evolution of marine ice
sheets. This model combines the Shallow Ice Approximation (SIA) for the ice
deformation, the Shallow Shelf Approximation (SSA) for the basal sliding and
the mass conservation principle. At each time step, we solve a generalized
p-Laplace minimization-type problem with obstacle (SIA), a vectorial p-Laplace
minimization-type problem (SSA) and a transport equation (mass conservation).
The two minimization problems are solved using a truncated nonsmooth Newton
multigrid method while the transport equation is solved using a vertex-centred
finite volume method. Our approach is combined to a mesh adaptive refinement
procedure to face the large gradients of the solution that are expected close
to the grounding line which separates the ice sheet and the ice shelf. As
applications, we present some simulations of the marine ice sheet model inter-
comparison project MISMIP in two and three space dimensions. In particular, we
test the ability of our model to reproduce a reversible grounding line after
being perturbed in model parameters.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
ice sheet model
dc.subject
variational inequality
dc.subject
nonlinear multigrid method
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
An adaptive Newton multigrid method for a model of marine ice sheets
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020608
refubium.mycore.reportnumber
A /01/2012
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /01/2012
refubium.mycore.derivateId
FUDOCS_derivate_000000003716
dcterms.accessRights.openaire
open access