dc.contributor.author
Wario, Fernando
dc.contributor.author
Landgraf, Tim
dc.contributor.author
Wild, Benjamin
dc.contributor.author
Couvillon, Margaret J.
dc.contributor.author
Rojas, Raúl
dc.date.accessioned
2018-06-08T07:15:58Z
dc.date.available
2015-11-27T07:00:01.567Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/17525
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21409
dc.description.abstract
The honeybee waggle dance communication system is an intriguing example of
abstract animal communication and has been investigated thoroughly throughout
the last seven decades. Typically, observables such as waggle durations or
body angles are extracted manually either directly from the observation hive
or from video recordings to quantify properties of the dance and related
behaviors. In recent years, biology has profited from automation, improving
measurement precision, removing human bias, and accelerating data collection.
We have developed technologies to track all individuals of a honeybee colony
and to detect and decode communication dances automatically. In strong
contrast to conventional approaches that focus on a small subset of the hive
life, whether this regards time, space, or animal identity, our more inclusive
system will help the understanding of the dance comprehensively in its
spatial, temporal, and social context. In this contribution, we present full
specifications of the recording setup and the software for automatic
recognition of individually tagged bees and the decoding of dances. We discuss
potential research directions that may benefit from the proposed automation.
Lastly, to exemplify the power of the methodology, we show experimental data
and respective analyses from a continuous, experimental recording of 9 weeks
duration.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
animal behavior
dc.subject
animal tracking
dc.subject
computer vision
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Automatic methods for long-term tracking and the detection and decoding of
communication dances in honeybees
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Front. Ecol. Evol. - 3 (2015), Artikel Nr. 103
dcterms.bibliographicCitation.doi
10.3389/fevo.2015.00103
dcterms.bibliographicCitation.url
http://dx.doi.org/10.3389/fevo.2015.00103
refubium.affiliation
Mathematik und Informatik
de
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000023377
refubium.note.author
Gefördert durch die DFG und den Open Access Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005598
dcterms.accessRights.openaire
open access