dc.contributor.author
Kleinert, Hagen
dc.date.accessioned
2018-06-08T04:23:10Z
dc.date.available
2014-03-14T08:34:29.837Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/17187
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21365
dc.description.abstract
While free and weakly interacting particles are described by a second-
quantized nonlinear Schrödinger field, or relativistic versions of it, the
fields of strongly interacting particles are governed by effective actions,
whose quadratic terms are extremized by fractional wave equations. Their
particle orbits perform universal Lévy walks rather than Gaussian random walks
with perturbations.
en
dc.rights.uri
http://authors.iop.org/atom/help.nsf/0/F20EC7D4A1A670AA80256F1C0053EEFF?OpenDocument
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Fractional quantum field theory, path integral, and stochastic differential
equation for strongly interacting many-particle systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
EPL (Europhysics Letters). - 100 (2012), 1, Artikel Nr. 10001/1-6
dc.identifier.sepid
25364
dcterms.bibliographicCitation.doi
10.1209/0295-5075/100/10001
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1209/0295-5075/100/10001
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019901
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003262
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0295-5075