dc.contributor.author
Gröne, Jörn
dc.date.accessioned
2018-06-07T15:51:59Z
dc.date.available
2012-01-25T09:41:14.510Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/1709
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-5911
dc.description.abstract
Das kolorektale Karzinom ist einer der häufigsten malignen Tumore weltweit mit
einer weiterhin hohen Mortalitätsrate. Bei derzeit prognostisch nahezu
ausgereizten chirurgischen Therapiestrategien stellen die Identifikation und
Validierung a) neuer molekularer Angriffspunkte für die medikamentöse
Tumortherapie (Targets), b) neuer Marker für die individuelle Vorhersage der
Verträglichkeit und des Ansprechens der medikamentösen Tumortherapie und c)
neuer individueller Prognosemarker, aktuelle Herausforderungen für die
Tumorforschung dar. Ziel unserer Arbeiten war die Untersuchung des
Zusammenhangs zwischen Veränderungen auf der Ebene der Genexpression und
phänotypischen Merkmalen beim kolorektalen Karzinom durch die genomweite
Microarray basierte Analyse der Transkription, dem sog. Gene Expression
Profiling. In einem ersten Schritt konnten zahlreiche differentiell
exprimierte Gene identifiziert werden, deren Validierung auf RNA- und
Proteinebene eine Bewertung in Bezug auf funktionelle Einordnung in die
Karzinogenese und eine Evaluierung in Bezug auf eine potentielle Rolle als
Zielgen für die Tumortherapie ermöglichte. Wir konnten darüber hinaus einen
Zusammenhang zwischen Tumorprogression und molekularen Veränderungen auf
Genexpressionsebene darstellen und anhand einer 45-Gen-Signatur zeigen, dass
sich hinter den phänotypischen Veränderungen und der Progression des
kolorektalen Karzinoms von einem lokal begrenzten Tumorwachstum ohne
Lymphknotenmetastasierung hin zu einer fortgeschrittenen Erkrankung uniforme
Veränderungen auf Gen-expressionsebene abspielen. Interessant ist dieser
Zusammenhang insbesondere vor dem Hintergrund der Heterogenität der
Genexpression innerhalb der Tumoren, die wir im Rahmen der Analyse von
Signalwegen belegen konnten. Durch unsere Ergebnisse im Bereich der
prognostischen Signaturen konnten wir die Hypothese unterfüttern, dass die
Transkripte des Primärtumors Informationen über die Prognose enthalten, die
über die Genexpressionsanalyse gelesen werden können. Die große Liste der
identifizierten Gene im Rahmen der Genexpressionsanalysen stellt eine Quelle
für potenzielle Therapie-Targets dar, da die meisten der Gene in
Schlüsselmechanismen der Tumorentstehung und Tumorprogression, von der
Zellproliferation und Zelldifferenzierung bis hin zum Überleben der Zelle,
involviert sind. Das systematische Verständnis der molekularen Basis einer
jeden Tumorentität erfordert letztendlich drei Schritte. Eine umfassende
Analyse charakteristischer genomischer Abberationen, die Interpretation der
biologischen Rolle bei der Karzinogenese und die Evaluation der Einsetzbarkeit
für die Entwicklung von Diagnostika, Prognoseparametern und Therapeutika.
Daher ist eine umfassende Charakterisierung des Genoms und des Proteoms
mithilfe neuer Technologien, wie GenChip Arrays, miRNA Arrays, Array-CGH und
SNP Arrays notwendig, um neue Therapie-Targets zu identifizieren und die
Möglichkeiten für die Behandlung des kolorektalen Karzinoms zu erweitern. Im
Gegensatz zur Prognosevorhersage anhand der etablierten Tumor-
Klassifikationen, die Gruppen über pathomorphologische Befunde und
Fünfjahresüberlebensraten definiert, jedoch keine individuelle
Prognoseabschätzung zulässt, sollte geprüft werden, ob anhand eines
„molekularen Gesichts“ der Erkrankung eine individuelle Prognosevorhersage
ergänzend oder unabhängig möglich wird. Inwieweit sich die Ergebnisse der
Microarray-Technologie in Zukunft in die klinische Routine für Diagnostik,
Prognostik und Therapie integrieren lassen, und somit einen Beitrag zur
individualisierten Tumortherapie leisten, kann zum jetzigen Zeitpunkt nicht
abschließend beurteilt werden und muss in weiteren Validierungsstudien
analysiert werden.
de
dc.description.abstract
Colorectal cancer is among the most common malignant tumors worldwide with a
continued high mortality rate. In view of the nearly exhausted surgical
possibilities for prognostic improvement, tumor research faces the current
challenge of identifying and validating a) new molecular targets for drug
therapy, b) new markers for predicting individual drug tolerance and response,
and c) new individual prognostic markers. The aim of our study was to examine
the relationship between changes in gene expression patterns and phenotypic
characteristics in colorectal cancer by genome-wide microarray-based
transcriptional analysis (so-called gene expression profiling). The first step
identified numerous differentially expressed genes whose validation at the RNA
and protein level made it possible to assess their functional role in
carcinogenesis and to evaluate them as potential targets for tumor therapy. In
addition, we demonstrated a relationship between tumor progression and gene
expression changes at the molecular level and, using a 45-gene signature, we
showed that uniform gene expression changes underlie the phenotypic changes
and the progression of colorectal cancer from localized tumor growth (without
lymph node involvement) to advanced disease. This connection is particularly
interesting in the context of intratumoral gene expression heterogeneity,
which we were able to confirm by signaling pathway analysis. The results we
obtained with prognostic signatures substantiated the hypothesis that
transcripts in primary tumors contain prognostic information that can be
“read” via gene expression profiling. The long list of genes identified by
gene expression profiling is a source of potential treatment targets, since
most of the genes are involved in key mechanisms of tumor development and
progression, ranging from cell proliferation and differentiation to cell
survival. A systematic understanding of the molecular basis of a given tumor
entity ultimately requires three steps: a comprehensive analysis of
characteristic genomic aberrations, an interpretation of the biological role
in carcinogenesis, and an evaluation of applicability for the development of
diagnostic agents, prognostic parameters and therapeutic agents. A
comprehensive genomic and proteomic characterization should thus be achieved
using new advanced technologies such as GeneChip arrays and miRNA arrays as
well as Array-CGH and SNP arrays in order to identify new treatment targets
and broaden the treatment options for colorectal cancer. Since established
tumor staging systems stratify patients into prognostic groups according to
pathomorphological factors and five-year survival rates but do not allow
individual prognostic assessment, it seemed expedient to examine whether a
“molecular face” of the disease can be used as a supplementary or independent
tool to predict the prognosis of individual patients. It is still too early to
draw final conclusions regarding the extent to which results in microarray
technology can be integrated into the clinical routine for diagnostic,
prognostic and therapeutic purposes and can thus contribute to individualized
tumor therapy. Further validation studies are required.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
colorectal cancer
dc.subject
gene expression profiling
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
Untersuchung des Zusammenhangs zwischen differentieller Genexpression und
phänotypischen Veränderungen solider Karzinome am Beispiel des kolorektalen
Karzinoms
dc.contributor.firstReferee
Herr Prof. Dr. Hans K. Schackert, Dresden
dc.contributor.furtherReferee
Herr Prof. Dr. Hans-Peter Bruch, Lübeck
dc.date.accepted
2011-12-12
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000035944-7
dc.title.translated
The relationship between differential gene expression and phenotypic changes
in solid tumors like colorectal cancer
en
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDISS_thesis_000000035944
refubium.mycore.derivateId
FUDISS_derivate_000000012364
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access