The study aimed to identify and select important plant growth-promoting rhizobacteria (PGPR) and examine the response of tomato growth upon inoculation. Inoculation with rhizobacterial isolates increased all the measured physical, chemical, and enzymatic growth parameters compared to control. However, the TAN1 isolate had the highest effect, and significantly (P < 0.05) increased the root length (8.25-fold), root fresh (8.36-fold) and dry (12.6-fold) weight, shoot length (6.92-fold), shoot fresh (7.18-fold) and dry (6.90-fold) weight, number of leaves (11.0-fold), chlorophyll a (6.25-fold), chlorophyll b (10.7-fold), carotenoid contents (8.80-fold), seedlings fresh (9.0-fold) and dry (8.71-fold) weight, plant macronutrient uptake, i.e. N (7.7- and 8.9-fold), P (10.5- and 11.4-fold), K (7.8- and 8.8-fold), Ca (12.7- and 8.2-fold), and Mg (12.6- and 9-fold) in shoot and root, plant micronutrient uptake, i.e. Zn (6.6-, 10.2-), Cu (9.3-, and 10.3-fold), Fe (7.7- and 10.7-fold), and Mn (4.7- and 5.7-fold) in shoot and root and plant antioxidant enzymes, i.e. glutathione S-transferase (10.7-fold), peroxidase (8.1-fold), and catalase (10.5-fold). Our results concluded that inoculation of agricultural crops with rhizobacteria is a very useful approach to increase the plant growth. The rhizobacteria having both 1-aminocyclopropane-1-carboxylate (ACC) deaminase and nitrogen-fixing activity are more effective than rhizobacteria possessing either ACC-deaminase or nitrogen-fixing activity alone for growth promotion of crops.