dc.contributor.author
Hörmann, N. G.
dc.contributor.author
Gross, A.
dc.contributor.author
Rohrer, J.
dc.contributor.author
Kaghazchi, P.
dc.date.accessioned
2018-06-08T04:19:40Z
dc.date.available
2015-10-16T07:51:48.117Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/17063
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21243
dc.description.abstract
Structures of Sn nanoparticles and nanowires are studied using density
functional theory in conjunction with thermodynamic considerations. Besides
the low-temperature α and room-temperature β phases, the high-temperature γ
phase is considered. Results show that at ambient temperatures for sizes
smaller than 50 nm, metallic β- and γ-Sn nanoparticles are more stable than
semimetallic α-Sn ones because of their lower surface energies. Moreover, very
small Sn nanostructures, exemplified by nanowires, are expected to exhibit the
γ phase even at 0 K.
de
dc.rights.uri
http://publishing.aip.org/authors/web-posting-guidelines
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie
dc.title
Stabilization of the γ-Sn phase in tin nanoparticles and nanowires
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Appl. Phys. Lett. - 107 (2015), 12, Artikel Nr. 123101
dcterms.bibliographicCitation.doi
10.1063/1.4931353
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/1.4931353
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDOCS_document_000000023321
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005554
dcterms.accessRights.openaire
open access