dc.contributor.author
Schmid, Martina
dc.contributor.author
Tsakanikas, S.
dc.contributor.author
Mangalgirl, G.
dc.contributor.author
Andrae, Patrick
dc.contributor.author
Song, Min
dc.contributor.author
Yin, G.
dc.contributor.author
Riedel, W.
dc.contributor.author
Manley, Phillip
dc.date.accessioned
2018-06-08T04:10:37Z
dc.date.available
2015-10-30T06:10:29.950Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16736
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20917
dc.description.abstract
Efficient light management in optoelectronic devices requires nanosystems
where high optical qualities coincide with suitable device integration. The
requirement of chemical and electrical passivation for integrating
nanostrutures in e.g. thin film solar cells points towards the use of
insulating and stable dielectric material, which however has to provide high
scattering and near-fields as well. We investigate metal@dielectric core-shell
nanoparticles and dielectric nanorods. Whereas core-shell nanoparticles can be
simulated using Mie theory, nanorods of finite length are studied with the
finite element method. We reveal that a metallic core within a thin dielectric
shell can help to enhance scattering and near-field cross sections compared to
a bare dielectric nanoparticle of the same radius. A dielectric nanorod has
the benefit over a dielectric nanosphere in that it can generate much higher
scattering cross sections and also give rise to a high near-field enhancement
along its whole length. Electrical benefits of e.g. Ag@oxide nanoparticles in
thin-film solar cells and ZnO nanorods in hybrid devices lie in reduction of
recombination centers or close contact of the nanorod material with the
surrounding organics, respectively. The optical benefit of dielectric shell
material and elongated dielectric nanostructures is highlighted in this paper.
en
dc.rights.uri
http://spie.org/x1811.xml
dc.subject
core-shell nanoparticles
dc.subject
dielectric nanorods
dc.subject
scattering and absorption cross sections
dc.subject
finite element method
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Nano-optical concept design for light management
dcterms.bibliographicCitation
Proceedings of SPIE. - 9626 (2015) Optical Design and Engineering VI, Artikel
Nr. 96260E
dc.identifier.sepid
46594
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1117/12.2191081
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000023350
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005578
dcterms.accessRights.openaire
open access