dc.contributor.author
Mesa, Fredy
dc.contributor.author
Chamorro, William
dc.contributor.author
Vallejo, William
dc.contributor.author
Baier, Robert
dc.contributor.author
Dittrich, Thomas
dc.contributor.author
Grimm, Alexander
dc.contributor.author
Lux-Steiner, Martha
dc.contributor.author
Sadewasser, Sascha
dc.date.accessioned
2018-06-08T04:01:07Z
dc.date.available
2014-08-27T06:27:31.675Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16406
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20587
dc.description.abstract
Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a
band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The
preparation of polycrystalline thin films was successfully realized and now
the junction formation to the n-type window needs to be developed. We present
an investigation of the Cu3BiS3 absorber layer and the junction formation with
CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the
granular structure of the buffer layers with small grains of 20–100 nm, and a
considerably smaller work-function distribution for In2S3 compared to that of
CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate
negatively charged Cu3BiS3 grain boundaries resulting from the deposition of
the buffer layer. Macroscopic measurements of the surface photovoltage at
variable excitation wavelength indicate the influence of defect states below
the band gap on charge separation and a surface-defect passivation by the
In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an
interesting absorber material for thin-film solar cells; however, for
photovoltaic application the band bending at the charge-selective contact has
to be increased.
de
dc.rights.uri
http://creativecommons.org/licenses/by/2.0/
dc.subject
Kelvin probe force microscopy
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy
and surface photovoltage measurements
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Beilstein Journal of Nanotechnology. - 3 (2012), S. 277-284
dc.identifier.sepid
29362
dcterms.bibliographicCitation.doi
10.3762/bjnano.3.31
dcterms.bibliographicCitation.url
http://dx.doi.org/10.3762/bjnano.3.31
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000020798
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003817
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2190-4286