dc.contributor.author
Kostrykin, Vadim
dc.contributor.author
Potthoff, Jürgen
dc.contributor.author
Schrader, Robert
dc.date.accessioned
2018-06-08T03:57:49Z
dc.date.available
2014-03-04T12:09:17.991Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16299
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20482
dc.description.abstract
Brownian motions on a metric graph are defined. Their generators are
characterized as Laplace operators subject to Wentzell boundary at every
vertex. Conversely, given a set of Wentzell boundary conditions at the
vertices of a metric graph, a Brownian motion is constructed pathwise on this
graph so that its generator satisfies the given boundary conditions.
en
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Brownian motions on metric graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Journal of Mathematical Physics. - 53 (2012), 9, Artikel Nr. 095206/1-16
dc.identifier.sepid
24743
dcterms.bibliographicCitation.doi
10.1063/1.4714661
dcterms.bibliographicCitation.url
http://link.aip.org/link/JMAPAQ/v53/i9/p095206/s1&Agg=doi
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019670
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003084
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
00222488