dc.contributor.author
Han, Bing
dc.contributor.author
Peng, Qiang
dc.contributor.author
Li, Ruopeng
dc.contributor.author
Rong, Qikun
dc.contributor.author
Ding, Yang
dc.contributor.author
Akinoglu, Eser Metin
dc.contributor.author
Wu, Xueyuan
dc.contributor.author
Wang, Xin
dc.contributor.author
Lu, Xubing
dc.contributor.author
Wang, Qianming
dc.contributor.author
Zhou, Guofu
dc.contributor.author
Liu, Jun-Ming
dc.contributor.author
Ren, Zhifeng
dc.contributor.author
Giersig, Michael
dc.contributor.author
Herczynski, Andrzej
dc.contributor.author
Kempa, Krzysztof
dc.contributor.author
Gao, Jinwei
dc.date.accessioned
2018-06-08T03:50:00Z
dc.date.available
2016-11-22T11:20:39.647Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16024
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20210
dc.description.abstract
An ideal network window electrode for photovoltaic applications should provide
an optimal surface coverage, a uniform current density into and/or from a
substrate, and a minimum of the overall resistance for a given shading ratio.
Here we show that metallic networks with quasi-fractal structure provides a
near-perfect practical realization of such an ideal electrode. We find that a
leaf venation network, which possesses key characteristics of the optimal
structure, indeed outperforms other networks. We further show that elements of
hierarchal topology, rather than details of the branching geometry, are of
primary importance in optimizing the networks, and demonstrate this
experimentally on five model artificial hierarchical networks of varied levels
of complexity. In addition to these structural effects, networks containing
nanowires are shown to acquire transparency exceeding the geometric constraint
due to the plasmonic refraction.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Energy harvesting
dc.subject
Solar energy and photovoltaic technology
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Optimization of hierarchical structure and nanoscale-enabled plasmonic
refraction for window electrodes in photovoltaics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Nature Communications. - 7 (2016), Artikel Nr. 12825
dcterms.bibliographicCitation.doi
10.1038/ncomms12825
dcterms.bibliographicCitation.url
http://www.nature.com/articles/ncomms12825
refubium.affiliation
Physik
de
refubium.mycore.fudocsId
FUDOCS_document_000000025730
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000007375
dcterms.accessRights.openaire
open access