We investigate adiabatic and nonadiabatic emission of single particles into an edge state using an analytically solvable dynamical scattering matrix model of an on-demand source. We compare adiabatic and nonadiabatic emissions by considering two geometries: a collider geometry where two emitters are coupled to two different edge states and a series geometry where two emitters are coupled to the same edge state. Most effects observed for adiabatic emitters also occur for nonadiabatic emitters. In particular this applies to effects arising due to the overlap of wave packets colliding at a quantum point contact. Specifically we compare the Pauli peak (the fermionic analog of the bosonic Hong-Ou-Mandel dip) for the adiabatic and nonadiabatic collider and find them to be similar. In contrast we find a striking difference between the two operating conditions in the series geometry in which particles are emitted into the same edge state. Whereas the squared average charge current can be nullified for both operating conditions, the heat current can be made to vanish only with adiabatic emitters.