dc.contributor.author
Rote, Günter
dc.date.accessioned
2018-06-08T03:39:22Z
dc.date.available
2014-04-01
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15658
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19845
dc.description.abstract
The Fréchet distance between two curves is the maximum distance in a
simultaneous traversal of the two curves. We refine this notion by not only
looking at the maximum distance but at all other distances. Roughly speaking,
we want to minimize the time T(s) during which the distance exceeds a
threshold s, subject to upper speed constraints. We optimize these times
lexicographically, giving more weight to larger distances s. For polygonal
curves in general position, this criterion produces a unique monotone matching
between the points on the two curves, which is important for applications like
morphing, and we can compute this matching in polynomial time.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme
dc.title
Lexicographic Fréchet matchings
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
30th European Workshop on Computational Geometry (EuroCG'14), Ein-Gedi,
Israel, 3.-5. März 2014
dc.identifier.sepid
33846
dcterms.bibliographicCitation.url
http://www.cs.bgu.ac.il/~eurocg14/accepted.html
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik
refubium.mycore.fudocsId
FUDOCS_document_000000020012
refubium.note.author
Der Artikel ist im Open Access erschienen.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003329
dcterms.accessRights.openaire
open access