dc.contributor.author
Petersen, Jens
dc.contributor.author
Wohlgemuth, Matthias
dc.contributor.author
Sellner, Bernhard
dc.contributor.author
Bonačić-Koutecký, Vlasta
dc.contributor.author
Lischka, Hans
dc.contributor.author
Mitric, Roland
dc.date.accessioned
2018-06-08T03:37:42Z
dc.date.available
2014-03-10T17:57:49.033Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15590
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19778
dc.description.abstract
We investigate theoretically the control of the ultrafast excited state
dynamics of adenine in water by laser pulse trains, with the aim to extend the
excited state lifetime and to suppress nonradiative relaxation processes. For
this purpose, we introduce the combination of our field-induced surface
hopping method (FISH) with the quantum mechanical–molecular mechanical (QM/MM)
technique for simulating the laser-driven dynamics in the condensed phase
under explicit inclusion of the solvent environment. Moreover, we employ
parametric pulse shaping in the frequency domain in order to design simplified
laser pulse trains allowing to establish a direct link between the pulse
parameters and the controlled dynamics. We construct pulse trains which
achieve a high excitation efficiency and at the same time keep a high excited
state population for a significantly extended time period compared to the
uncontrolled dynamics. The control mechanism involves a sequential cycling of
the population between the lowest and higher excited states, thereby utilizing
the properties of the corresponding potential energy surfaces to avoid conical
intersections and thus to suppress the nonradiative decay to the ground state.
Our findings provide a means to increase the fluorescence yield of molecules
with an intrinsically very short excited state lifetime, which can lead to
novel applications of shaped laser fields in the context of biosensing.
de
dc.rights.uri
http://www.rsc.org/publishing/journals/guidelines/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Laser pulse trains for controlling excited state dynamics of adenine in water
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Chemistry Chemical Physics. - 14 (2012), 14, S. 4687-4694
dc.identifier.sepid
25387
dcterms.bibliographicCitation.doi
10.1039/c2cp24002e
dcterms.bibliographicCitation.url
http://xlink.rsc.org/?DOI=c2cp24002e
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019607
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003575
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1463-9076