dc.contributor.author
Chevrel, M. O.
dc.contributor.author
Platz, Thomas
dc.contributor.author
Hauber, Ernst
dc.contributor.author
Baratoux, D.
dc.contributor.author
Lavallée, Y.
dc.contributor.author
Dingwell, D. B.
dc.date.accessioned
2018-06-08T03:36:33Z
dc.date.available
2014-09-16T19:37:56.452Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15556
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19744
dc.description.abstract
In planetary sciences, the emplacement of lava flows is commonly modelled
using a single rheological parameter (apparent viscosity or apparent yield
strength) calculated from morphological dimensions using Jeffreysʼ and Hulmeʼs
equations. The rheological parameter is then typically further interpreted in
terms of the nature and chemical composition of the lava (e.g., mafic or
felsic). Without the possibility of direct sampling of the erupted material,
the validity of this approach has remained largely untested. In modern
volcanology, the complex rheological behaviour of lavas is measured and
modelled as a function of chemical composition of the liquid phase, fractions
of crystals and bubbles, temperature and strain rate. Here, we test the
planetary approach using a terrestrial basaltic lava flow from the Western
Volcanic Zone in Iceland. The geometric parameters required to employ
Jeffreysʼ and Hulmeʼs equations are accurately estimated from high-resolution
HRSC-AX Digital Elevation Models. Samples collected along the lava flow are
used to constrain a detailed model of the transient rheology as a function of
cooling, crystallisation, and compositional evolution of the residual melt
during emplacement. We observe that the viscosity derived from the morphology
corresponds to the value estimated when significant crystallisation inhibits
viscous deformation, causing the flow to halt. As a consequence, the inferred
viscosity is highly dependent on the details of the crystallisation sequence
and crystal shapes, and as such, is neither uniquely nor simply related to the
bulk chemical composition of the erupted material. This conclusion, drawn for
a mafic lava flow where crystallisation is the primary process responsible for
the increase of the viscosity during emplacement, should apply to most of
martian, lunar, or mercurian volcanic landforms, which are dominated by
basaltic compositions. However, it may not apply to felsic lavas where
vitrification resulting from degassing and cooling may ultimately cause lava
flows to halt.
en
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/3.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie
dc.title
Lava flow rheology
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Earth and Planetary Science Letters. - 384 (2013), S. 109-120
dc.identifier.sepid
36014
dc.title.subtitle
a comparison of morphological and petrological methods
dcterms.bibliographicCitation.doi
10.1016/j.epsl.2013.09.022
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1016/j.epsl.2013.09.022
refubium.affiliation
Geowissenschaften
de
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.mycore.fudocsId
FUDOCS_document_000000020914
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003919
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0012821X