dc.contributor.author
Fröhlich, Chris
dc.date.accessioned
2018-06-07T15:45:07Z
dc.date.available
2013-11-07T14:59:47.136Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/1546
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-5748
dc.description
Contents
...................................................................................................................................................
v List of Figures
...........................................................................................................................................
ix List of Tables
............................................................................................................................................
xi 1\. Introduction
.....................................................................................................................................
1 1.1. Mitochondria
...........................................................................................................................
1 1.1.1. The mitochondrial compartment
....................................................................................
2 1.1.2. The mitochondrial network
.............................................................................................
5 1.1.3. Mitochondria associated diseases
..................................................................................
6 1.2. G proteins
................................................................................................................................
8 1.3. The dynamin superfamily of G proteins
................................................................................
10 1.3.1. Dynamin
........................................................................................................................
12 1.3.1.1. Dynamins are key players in clathrin-mediated endocytosis
................................ 12 1.3.1.2. The G domain and the bundle
signaling element ................................................. 14
1.3.1.3. G domain dimerization is crucial for dynamin function
........................................ 15 1.3.1.4. Dynamin's PH domain
mediates lipid binding .......................................................
17 1.3.1.5. The stalk is the central assembly hub for dynamin oligomerization
..................... 17 1.3.1.6. Regulatory functions of the stalk
.......................................................................... 20
1.3.1.7. Functional models of dynamin's mechano-chemical action
................................. 20 1.3.2. Myxovirus resistance (Mx) proteins
..............................................................................
22 1.3.2.1. Mx proteins mediate antiviral host response
....................................................... 22 1.3.2.2. Different
functions - similar structures: MxA and dynamin 1
............................... 23 1.3.2.3. The MxA stalk mediates
oligomerization and regulatory function ....................... 24 1.3.2.4.
The MxA stalk mediates assembly in rings rather than helices
............................ 25 1.3.3. Bacterial dynamin-like proteins (BDLPs)
....................................................................... 26
1.3.4. Guanylate-binding proteins (GBPs)
...............................................................................
28 1.3.5. Eps15 homology-domain containing proteins (EHDs)
................................................... 29 1.3.6. Mitochondrial
fusion
dynamins.....................................................................................
31 1.3.6.1. Mitochondrial outer membrane fusion dynamins
................................................ 31 1.3.6.2. Mitochondrial
inner membrane fusion dynamins
................................................ 32 1.3.7. The mitochondrial
fission dynamin 1-like protein (DNM1L)
......................................... 32 1.3.7.1. DNM1L is a key player in
mitochondrial fission .................................................... 32
1.3.7.2. Recruitment of DNM1L to mitochondria scission sites involves certain
adaptor proteins and the endoplasmic reticulum (ER)
........................................................................... 33
1.3.7.3. Two-start versus one-start helix
............................................................................
34 1.4. Scope of this work
.................................................................................................................
36 2\. Materials and Methods
.................................................................................................................
38 2.1. Materials
................................................................................................................................
38 2.1.1. Chemicals
.......................................................................................................................
38 2.1.2.
Antibodies......................................................................................................................
38 2.1.3. Enzymes
.........................................................................................................................
38 2.1.4. Kits
.................................................................................................................................
39 2.1.5. Microorganisms and cell lines
.......................................................................................
39 2.1.6. Vectors
...........................................................................................................................
40 2.1.7. cDNA clone
....................................................................................................................
40 2.1.8. Primers
..........................................................................................................................
40 2.1.8.1. Cloning Primers
.....................................................................................................
40 2.1.8.2. Quick change mutagenesis primers
...................................................................... 40
2.1.9. Media and antibiotics
....................................................................................................
42 2.1.10. Buffers
...........................................................................................................................
42 2.2. Molecular biology
methods...................................................................................................
43 2.2.1. Polymerase chain reaction
............................................................................................
43 2.2.2. DNA digestion
................................................................................................................
43 2.2.3. Agarose gel electrophoresis
..........................................................................................
43 2.2.4. DNA purification
............................................................................................................
43 2.2.5. Ligation
..........................................................................................................................
44 2.2.6. Preparation of chemically competent E. coli
................................................................. 44 2.2.7.
Transformation of chemically competent E. coli
........................................................... 44 2.2.8.
Isolation of plasmid DNA
...............................................................................................
44 2.2.9. DNA sequencing
............................................................................................................
44 2.2.10. Site specific
mutagenesis...............................................................................................
44 2.2.11. Sequence alignments
....................................................................................................
45 2.2.12. Bacterial storage
............................................................................................................
45 2.2.13. Construct design
............................................................................................................
45 2.3. Biochemical methods
............................................................................................................
45 2.3.1. SDS PAGE
.......................................................................................................................
45 2.3.2. Protein over-expression test in E. coli
........................................................................... 45
2.3.3. Protein solubility test
....................................................................................................
46 2.3.4. Large scale protein over-expression in E. coli
............................................................... 46 2.3.5.
Protein purification / AC and SEC
..................................................................................
46 2.3.6. Protein concentration
...................................................................................................
47 2.3.7. Determination of protein concentration
....................................................................... 47
2.3.8. Protein storage
..............................................................................................................
47 2.3.9. Western Blot
..................................................................................................................
47 2.3.10. Nucleotide detection using reversed-phase HPLC
........................................................ 47 2.3.11. Isothermal
titration calorimetry (ITC)
........................................................................... 48
2.3.12. Nucleotide hydrolysis assays
.........................................................................................
48 2.3.13. Analytical ultracentrifugation
........................................................................................
49 2.3.14. Analytical gelfiltration and right angle light scattering (RALS)
...................................... 49 2.3.15. Oligomerization and liposome
co-sedimentation assays .............................................. 50
2.3.16. Floatation assays
...........................................................................................................
50 2.3.17. Electron microscopy
......................................................................................................
50 2.4. Crystallographic and computational methods
...................................................................... 51
2.4.1. Protein crystallization
....................................................................................................
51 2.4.2. Cryo-protection of crystals
............................................................................................
51 2.4.3. Data collection
...............................................................................................................
51 2.4.4. Protein structure solution
.............................................................................................
52 2.4.5. Atomic model building and refinement
........................................................................ 55
2.4.6. Structure analysis and figure preparation
..................................................................... 55
2.4.7. Protein structure validation and deposition
................................................................. 55 2.4.8.
Electron microscopy model
fit.......................................................................................
55 2.5. Cell biological methods
.........................................................................................................
56 2.5.1. Cell culture and transfection
.........................................................................................
56 2.5.2. Live cell microscopy
.......................................................................................................
56 2.5.3. Mitochondrial connectivity FRAP assay
........................................................................ 56
3\. Results
...........................................................................................................................................
57 3.1. Protein production and biochemistry
...................................................................................
57 3.1.1. Protein over-expression
................................................................................................
57 3.1.2. Protein solubility and purification
.................................................................................
58 3.1.3. Nucleotide binding and affinity
.....................................................................................
59 3.2. Structural analysis of DNM1L
................................................................................................
61 3.2.1. Crystallization and structure determination
................................................................. 61 3.2.2.
Structure of
DNM1L.......................................................................................................
65 3.2.3. The stalk interfaces
.......................................................................................................
68 3.2.4. Localization of the B insert and the GPRP motif
........................................................... 72 3.3. Structure-
based mutational analysis
.....................................................................................
73 3.3.1. Stalk interface 2 mediates dimerization
........................................................................ 73
3.3.2. Functional importance of the B insert and the GPRP motif
.......................................... 83 3.3.3. Stalk interface 4 is
important for liposome tubulation in vitro and mitochondrial remodeling in
vivo
.........................................................................................................................
88 3.4. A helical model for DNM1L
assembly....................................................................................
92 4\. Discussion
......................................................................................................................................
94 4.1. Similarities and differences in the assembly of dynamin superfamily
proteins ................... 94 4.2. Mechano-chemical coupling in DNM1L
................................................................................
97 4.3. DNM1L oligomers might be adapted to the size of mitochondria
........................................ 99 4.4. The molecular basis for DNM1L
caused
diseases................................................................ 101
4.5. Open questions and outlook
...............................................................................................
105 Appendix A - Instruments
....................................................................................................................
107 Appendix B - Chemicals
.......................................................................................................................
108 Appendix C - Clone list
.........................................................................................................................
110 Appendix D - Alignment
......................................................................................................................
111 Appendix E - Abbreviation
...................................................................................................................
114 Bibliography
.........................................................................................................................................
116 Abstract
...............................................................................................................................................
125 Zusammenfassung
...............................................................................................................................
127 Publications
.........................................................................................................................................
129
Acknowledgement...............................................................................................................................
130 Erklärung
.............................................................................................................................................
131
dc.description.abstract
Mitochondria form a dynamic cytoskeleton-associated tubulovesicular network
throughout the whole cell which continuously undergoes fusion- and division
processes; collectively termed mitochondrial dynamics. Mitochondrial dynamics
is an important cellular tool for proper organelle transport to places of high
energy demand inside the cell. Furthermore, mitochondrial dynamics functions
as quality control mechanism. During lifetime the mitochondrial genome gets
more and more heteroplasmic and mitochondrial fusion is an important process
to keep the mtDNA content of a cell homogenous. Thus, fusion enables
mitochondria with mutations in different genes to cross-complement each other.
In contrast, fission can separate mitochondria from the network which are
damaged by, for example, reactive oxygen species for mitophagy and recycling.
Since mitochondria cannot be created de novo, fission is also required to
equally distribute mitochondria during cytogenesis. Several studies showed
that disturbed mitochondrial dynamics is implicated in several severe
neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease
or Huntington's disease. The key player in the process of mitochondrial
division is the large G protein dynamin 1-like protein (DNM1L). In this work
DNM1L was structurally and functionally characterized to better understand the
process of mitochondrial division and to explain the causes of DNM1L
associated diseases on a molecular level. Despite limited sequence identity,
the domain architecture of DNM1L is similar to that observed for dynamin and
MxA. DNM1L is composed of a dynamin-specific N-terminal G domain and an
elongated four-helical stalk. Both domains are connected via a three-helical
bundle; the bundle signaling element (BSE). The stalk is intersected by
another domain, termed B insert which is located at equivalent positions like
the lipid binding PH domain in dynamin or the substrate binding loop in MxA.
DNM1L assembled via a central stalk interface, and mutations in this interface
disrupted dimerization and interfered with membrane binding and mitochondrial
targeting. Two sequence stretches at the tip of the stalk were shown to be
required for ordered assembly of DNM1L on membranes and its function in
mitochondrial fission. In the crystals, DNM1L dimers further assembled via a
second, previously undescribed, stalk interface to form a linear filament.
Mutations in this interface interfered with liposome tubulation and
mitochondrial remodeling. Based on these results and electron microscopy
reconstructions, we propose an oligomerization model for DNM1L which differs
from that of dynamin and might be adapted to the remodeling of mitochondria.
de
dc.description.abstract
Mitochondrien formen ein tubolovesikuläres Netzwerk, welches die gesamte Zelle
durchspannt und eng an das Zytoskelett assoziiert ist. Außerdem ist das
mitochondriale Netzwerk sehr dynamisch und kontinuierlichen Teilungs- und
Fusionsprozessen unterworfen. Dies ermöglicht der Zelle den gezielten
Transport von einzelnen Teilen des mitochondrialen Netzwerks zu Orten hohen
Energie- (ATP)-verbrauchs innerhalb der Zelle. Außerdem funktionieren Fusions-
und Teilungsprozesse als Qualitätssicherungsmaßnahme. Mitochondriale Fusion
er-möglicht es der Zelle zum Beispiel, dass mit fortschreitendem Alter
zunehmend heteroplasmische mitochondriale Genom homogen zu halten.
Mitochondrien mit verschiedenen Mutationen innerhalb ihres Genoms können
gezielt verschmelzen und damit ihr Genom gegenseitig komplementieren. Im
Gegensatz dazu ermöglicht mitochondriale Teilung Mitochondrien, die z.B. durch
reaktive Sauerstoffspezies stark beschädigt worden sind, vom Netzwerk abzu-
koppeln und während des mitophagialen Stoffwechselweges gänzlich abzubauen
bzw. deren molekulare Bausteine wieder aufzubereiten. Da Mitochondrien
zellulär nicht de novo synthetisiert werden können, benötigt die Zelle
außerdem einen Mechanismus, um während der Zellteilung das mitochondriale
Netzwerk gleichmäßig auf beide Tochterzellen aufzuteilen. Fehlfunktionen, die
zu gestörten mitochondrialen Fusions- oder Teilungsprozessen führen, wurden in
mehreren unabhängigen Studien in Zusammenhang mit ernsthaften
neurodegenerativen Erkrankungen wie Alzheimer, Parkinson oder Huntington
gebracht. Der Hauptakteur mitochondrialer Teilung ist das große G protein
"Dynamin 1-like Protein" (DNM1L). In dieser Arbeit wurde DNM1L strukturell und
biochemisch charakterisiert mit dem Ziel, den molekularen Mechanismus besser
zu verstehen, der hinter dem Prozess der mitochondrialen Teilung steckt und um
mögliche Ursachen der oben genannten Krankheiten auf molekularer Ebene
betrachten zu können. Obwohl die Sequenzhomologie nur sehr gering ist, zeigt
die Struktur von DNM1L große Ähnlichkeit mit den Strukturen klassischen
Dynamins und Myxovirusresistenz-proteins A (Mx A). DNM1L besteht aus der für
Dynaminproteine typischen N-terminalen G domäne und einer elongierten,
stielartigen Domäne (engl. stalk), welche aus vier α-Helices besteht. Beide
Domänen sind durch ein Dreihelixbündel 128 miteinander verbunden
(Bündelsignalelement; engl. bundle signaling element: BSE). Die stielartige
Domäne wird durch eine weitere Domäne unterbrochen, welche B Domäne (engl. B
insert) genannt wird und an äquivalenter Position zu den Substratbindedomänen
von Dynamin und MxA lokalisiert ist. In dieser Arbeit konnte gezeigt werden,
dass DNM1L analog zu Dynamin und MxA über eine konservierte
Interaktionsschnittstelle in der stielartigen Domäne dimerisiert.
Mutationsanalysen zeigten, dass die Dimerisierung über diese Schnittstelle von
zentraler Bedeutung für die Membranbindung und mitochondriale Remodelierung
ist. Außerdem deuten die Ergebnisse dieser Arbeit darauf hin, dass die B
Domäne die Bindung von DNM1L an die mitochondriale Außenmembran vermittelt.
Außerdem ist ein weiterer ungeordneter Bereich am distalen Ende der
stielartigen Domäne wichtig für die geordnete Oligomerisierung von DNM1L und
für dessen Membranbindung. Im Kristall lagerten sich die DNM1L Dimere über
eine weitere Schnittstelle in der stielartigen Domäne zusammen, welche bisher
für kein Protein der Dynaminsuper-familie beschrieben worden ist. Mutationen,
die diese Schnittstelle auflösen, führten zu einer gestörten Tubulierung von
Liposomen in vitro und zum Ausbleiben der Lokalisierung von DNM1L an die
mitochondraile Außenmebran in vivo. Damit verbunden war ein fehlerhafter
mitochondrialer Teilungsprozess, der zu vergrößer-ten, teilweise mehrere μm
langen Mitochondrien führte. Basierend auf den Ergebnissen dieser Arbeit und
cryoelektronenmikroskopischen Studien, schlagen wir ein
Oligomerisierungsmodell vor, welches sich von Dynamin und MxA unterscheidet
und möglicherweise an die besonderen Anforderungen für den Teilungsprozess der
mitochondrialen Doppelmembran und die Größe von Mito-chondrien angepasst ist.
en
dc.format.extent
XI, 131 S.
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
dynamin 1-like
dc.subject
mitochondrial remodeling
dc.subject
two-start helix
dc.subject
mitochondrial fission
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie
dc.title
Structural insights into oligomerization and mitochondrial remodeling of
dynamin 1-like protein
dc.contributor.contact
chris.froehlich@me.com
dc.contributor.firstReferee
Prof. Dr. Udo Heinemann
dc.contributor.furtherReferee
Prof. Dr. Oliver Daumke
dc.date.accepted
2013-07-29
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000095444-6
dc.title.translated
Einblicke in die Struktur, Oligomerisierung und mitochondrialer Remodellierung
von Dynamin 1-like protein
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000095444
refubium.mycore.derivateId
FUDISS_derivate_000000014322
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access