dc.contributor.author
Friesdorf, Mathis
dc.contributor.author
Werner, Albert
dc.contributor.author
Brown, Winton Goodhand
dc.contributor.author
Scholz, V. B.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2018-06-08T03:34:05Z
dc.date.available
2016-03-15T11:33:30.543Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15466
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19654
dc.description.abstract
The phenomenon of many-body localization has received a lot of attention
recently, both for its implications in condensed-matter physics of allowing
systems to be an insulator even at nonzero temperature as well as in the
context of the foundations of quantum statistical mechanics, providing
examples of systems showing the absence of thermalization following out-of-
equilibrium dynamics. In this work, we establish a novel link between
dynamical properties—a vanishing group velocity and the absence of
transport—with entanglement properties of individual eigenvectors. For systems
with a generic spectrum, we prove that strong dynamical localization implies
that all of its many-body eigenvectors have clustering correlations. The same
is true for parts of the spectrum, thus allowing for the existence of a
mobility edge above which transport is possible. In one dimension these
results directly imply an entanglement area law; hence, the eigenvectors can
be efficiently approximated by matrix-product states.
en
dc.rights.uri
http://journals.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Many-Body Localization Implies that Eigenvectors are Matrix-Product States
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 114 (2015), 17, Artikel Nr. 170505
dc.identifier.sepid
48547
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.114.170505
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevLett.114.170505
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000024155
refubium.note.author
Bei der pdf-Datei handelt es sich um eine Manuskriptversion des Artikels.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000006106
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007