dc.contributor.author
Roethlein, Christoph
dc.contributor.author
Miettinen, Markus S.
dc.contributor.author
Ignatova, Zoya
dc.date.accessioned
2018-06-08T03:27:11Z
dc.date.available
2015-05-26T12:35:25.557Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15203
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19391
dc.description.abstract
Background Time-correlated Förster resonance energy transfer (FRET) probes
molecular distances with greater accuracy than intensity-based calculation of
FRET efficiency and provides a powerful tool to study biomolecular structure
and dynamics. Moreover, time-correlated photon count measurements bear
additional information on the variety of donor surroundings allowing more
detailed differentiation between distinct structural geometries which are
typically inaccessible to general fitting solutions. Results Here we develop a
new approach based on Monte Carlo simulations of time-correlated FRET events
to estimate the time-correlated single photon counts (TCSPC) histograms in
complex systems. This simulation solution assesses the full statistics of
time-correlated photon counts and distance distributions of fluorescently
labeled biomolecules. The simulations are consistent with the theoretical
predictions of the dye behavior in FRET systems with defined dye distances and
measurements of randomly distributed dye solutions. We validate the simulation
results using a highly heterogeneous aggregation system and explore the
conditions to use this tool in complex systems. Conclusion This approach is
powerful in distinguishing distance distributions in a wide variety of
experimental setups, thus providing a versatile tool to accurately distinguish
between different structural assemblies in highly complex systems.
de
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie
dc.title
A flexible approach to assess fluorescence decay functions in complex energy
transfer systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
BMC Biophysics. - 8 (2015), Artikel Nr. 5
dcterms.bibliographicCitation.doi
10.1186/s13628-015-0020-z
dcterms.bibliographicCitation.url
http://www.biomedcentral.com/2046-1682/8/5
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000022467
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004937
dcterms.accessRights.openaire
open access