dc.contributor.author
Shahraiyni, Hamid Taheri
dc.contributor.author
Sodoudi, Sahar
dc.date.accessioned
2018-06-08T03:25:58Z
dc.date.available
2016-05-03T13:56:00.969Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15171
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19359
dc.description.abstract
PM10 prediction has attracted special legislative and scientific attention due
to its harmful effects on human health. Statistical techniques have the
potential for high-accuracy PM10 prediction and accordingly, previous studies
on statistical methods for temporal, spatial and spatio-temporal prediction of
PM10 are reviewed and discussed in this paper. A review of previous studies
demonstrates that Support Vector Machines, Artificial Neural Networks and
hybrid techniques show promise for suitable temporal PM10 prediction. A review
of the spatial predictions of PM10 shows that the LUR (Land Use Regression)
approach has been successfully utilized for spatial prediction of PM10 in
urban areas. Of the six introduced approaches for spatio-temporal prediction
of PM10, only one approach is suitable for high-resolved prediction (Spatial
resolution < 100 m; Temporal resolution ¤ 24 h). In this approach, based upon
the LUR modeling method, short-term dynamic input variables are employed as
explanatory variables alongside typical non-dynamic input variables in a non-
linear modeling procedure.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
spatial prediction
dc.subject
spatial-temporal prediction
dc.subject
statistical models
dc.subject
PM10 predictors
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Statistical Modeling Approaches for PM10 Prediction in Urban Areas
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Atmosphere. 2016; 7(2):15.
dc.title.subtitle
A Review of 21st-Century Studies
dcterms.bibliographicCitation.doi
10.3390/atmos7020015
dcterms.bibliographicCitation.url
http://www.mdpi.com/2073-4433/7/2/15
refubium.affiliation
Geowissenschaften
de
refubium.affiliation.other
Institut für Meteorologie
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000024197
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000006146
dcterms.accessRights.openaire
open access