dc.contributor.author
Mari, A.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2018-06-08T03:23:04Z
dc.date.available
2014-02-07T15:11:10.550Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15066
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19254
dc.description.abstract
We show that quantum circuits where the initial state and all the following
quantum operations can be represented by positive Wigner functions can be
classically efficiently simulated. This is true both for continuous-variable
as well as discrete variable systems in odd prime dimensions, two cases which
will be treated on entirely the same footing. Noting the fact that Clifford
and Gaussian operations preserve the positivity of the Wigner function, our
result generalizes the Gottesman-Knill theorem. Our algorithm provides a way
of sampling from the output distribution of a computation or a simulation,
including the efficient sampling from an approximate output distribution in
the case of sampling imperfections for initial states, gates, or measurements.
In this sense, this work highlights the role of the positive Wigner function
as separating classically efficiently simulable systems from those that are
potentially universal for quantum computing and simulation, and it emphasizes
the role of negativity of the Wigner function as a computational resource.
de
dc.rights.uri
http://publish.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Positive Wigner Functions Render Classical Simulation of Quantum Computation
Efficient
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 109 (2012), 23, S. 230503/1-5
dc.identifier.sepid
24725
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.109.230503
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevLett.109.230503
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019529
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000002973
dcterms.accessRights.openaire
open access