dc.contributor.author
Meyer, Julia S.
dc.contributor.author
Refael, Gil
dc.date.accessioned
2018-06-08T03:20:55Z
dc.date.available
2014-08-21T10:28:03.683Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14983
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19171
dc.description.abstract
Topological behavior can be masked when disorder is present. A topological
insulator, either intrinsic or interaction induced, may turn gapless when
sufficiently disordered. Nevertheless, the metallic phase that emerges once a
topological gap closes retains several topological characteristics. By
considering the self-consistent disorder-averaged Green function of a
topological insulator, we derive the condition for gaplessness. We show that
the edge states survive in the gapless phase as edge resonances and that,
similar to a doped topological insulator, the disordered topological metal
also has a finite, but nonquantized topological index. We then consider the
disordered Mott topological insulator. We show that within mean-field theory,
the disordered Mott topological insulator admits a phase where the symmetry-
breaking order parameter remains nonzero but the gap is closed, in complete
analogy to “gapless superconductivity” due to magnetic disorder.
de
dc.rights.uri
http://forms.aps.org/author/copytrnsfr.pdf
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Disordered topological metals
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review B. - 87 (2013), 10, S.104202
dc.identifier.sepid
38058
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.87.104202
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevB.87.104202
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000020774
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003799
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1098-0121