dc.contributor.author
Saggio, Maria Luisa
dc.contributor.author
Ritter, Petra
dc.contributor.author
Jirsa, Viktor K.
dc.date.accessioned
2018-06-08T03:20:08Z
dc.date.available
2016-10-18T09:13:18.826Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14957
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19145
dc.description.abstract
Resting-state large-scale brain models vary in the amount of biological
elements they incorporate and in the way they are being tested. One might
expect that the more realistic the model is, the closer it should reproduce
real functional data. It has been shown, instead, that when linear correlation
across long BOLD fMRI time-series is used as a measure for functional
connectivity (FC) to compare simulated and real data, a simple model performs
just as well, or even better, than more sophisticated ones. The model in
question is a simple linear model, which considers the physiological noise
that is pervasively present in our brain while it diffuses across the white-
matter connections, that is structural connectivity (SC). We deeply
investigate this linear model, providing an analytical solution to
straightforwardly compute FC from SC without the need of computationally
costly simulations of time-series. We provide a few examples how this
analytical solution could be used to perform a fast and detailed parameter
exploration or to investigate resting-state non-stationarities. Most
importantly, by inverting the analytical solution, we propose a method to
retrieve information on the anatomical structure directly from functional
data. This simple method can be used to complement or guide DTI/DSI and
tractography results, especially for a better assessment of inter-hemispheric
connections, or to provide an estimate of SC when only functional data are
available.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
Analytical Operations Relate Structural and Functional Connectivity in the
Brain
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
PLoS ONE. - 11 (2016), 8, Artikel Nr. e0157292
dcterms.bibliographicCitation.doi
10.1371/journal.pone.0157292
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1371/journal.pone.0157292
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000025560
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000007223
dcterms.accessRights.openaire
open access