dc.contributor.author
Benzmüller, Christoph
dc.contributor.author
Claus, Maximilian
dc.contributor.author
Sultana, Nik
dc.date.accessioned
2018-06-08T03:19:43Z
dc.date.available
2016-04-01T10:56:27.340Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14939
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19127
dc.description.abstract
We present an automated verification of the well-known modal logic cube in
Isabelle/HOL, in which we prove the inclusion relations between the cube's
logics using automated reasoning tools. Prior work addresses this problem but
without restriction to the modal logic cube, and using encodings in first-
order logic in combination with first-order automated theorem provers. In
contrast, our solution is more elegant, transparent and effective. It employs
an embedding of quantified modal logic in classical higher-order logic.
Automated reasoning tools, such as Sledgehammer with LEO-II, Satallax and
CVC4, Metis and Nitpick, are employed to achieve full automation. Though
successful, the experiments also motivate some technical improvements in the
Isabelle/HOL tool.
en
dc.rights.uri
http://about.eptcs.org/
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme
dc.title
Systematic Verification of the Modal Logic Cube in Isabelle/HOL
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Electronic Proceedings in Theoretical Computer Science. - 186 (2015), S. 27-41
dcterms.bibliographicCitation.doi
10.4204/EPTCS.186.5
dcterms.bibliographicCitation.url
http://arxiv.org/abs/1507.08717
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDOCS_document_000000024306
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000006220
dcterms.accessRights.openaire
open access