dc.contributor.author
Jong, S. de
dc.contributor.author
Kukreja, R.
dc.contributor.author
Trabant, Christoph
dc.contributor.author
Pontius, N.
dc.contributor.author
Chang, C. F.
dc.contributor.author
Kachel, T.
dc.contributor.author
Beye, M.
dc.contributor.author
Sorgenfrei, F.
dc.contributor.author
Back, C. H.
dc.contributor.author
Bräuer, B.
dc.contributor.author
Schlotter, W. F.
dc.contributor.author
Turner, J. J.
dc.contributor.author
Krupin, O.
dc.contributor.author
Doehler, M.
dc.contributor.author
Zhu, D.
dc.contributor.author
Hossain, M. A.
dc.contributor.author
Scherz, A. O.
dc.contributor.author
Fausti, D.
dc.contributor.author
Novelli, F.
dc.contributor.author
Esposito, M.
dc.contributor.author
Lee, W. S.
dc.contributor.author
Chuang, Y. D.
dc.contributor.author
Lu, D. H.
dc.contributor.author
Moore, R. G.
dc.contributor.author
Yi, M.
dc.contributor.author
Trigo, M.
dc.contributor.author
Kirchmann, P.
dc.contributor.author
Pathey, L.
dc.contributor.author
Golden, M. S.
dc.contributor.author
Buchholz, M.
dc.contributor.author
Metcalf, P.
dc.contributor.author
Parmigiani, F.
dc.contributor.author
Wurth, W.
dc.contributor.author
Föhlisch, A.
dc.contributor.author
Schüßler-Langeheine, C.
dc.contributor.author
Dürr, H. A.
dc.date.accessioned
2018-06-08T03:19:14Z
dc.date.available
2014-06-23T06:54:40.704Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14909
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19097
dc.description.abstract
As the oldest known magnetic material, magnetite (Fe3O4) has fascinated
mankind for millennia. As the first oxide in which a relationship between
electrical conductivity and fluctuating/localized electronic order was shown1,
magnetite represents a model system for understanding correlated oxides in
general. Nevertheless, the exact mechanism of the insulator–metal, or Verwey,
transition has long remained inaccessible [2, 3, 4, 5, 6, 7, 8]. Recently,
three-Fe-site lattice distortions called trimerons were identified as the
characteristic building blocks of the low-temperature insulating
electronically ordered phase [9]. Here we investigate the Verwey transition
with pump–probe X-ray diffraction and optical reflectivity techniques, and
show how trimerons become mobile across the insulator–metal transition. We
find this to be a two-step process. After an initial 300 fs destruction of
individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to
yield residual insulating and metallic regions. This work establishes the
speed limit for switching in future oxide electronics [10].
de
dc.rights.uri
http://www.nature.com/authors/editorial_policies/confidentiality.html
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Speed limit of the insulator–metal transition in magnetite
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Nature Materials. - 12 (2013), 10, S. 882-886
dc.identifier.sepid
35923
dcterms.bibliographicCitation.doi
10.1038/NMAT3718
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1038/nmat3718
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000020516
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003651
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1476-1122