dc.contributor.author
Zaharieva, Ivelina
dc.contributor.author
Chernev, Petko
dc.contributor.author
Risch, Marcel
dc.contributor.author
Klingan, Katharina
dc.contributor.author
Kohlhoff, Mike
dc.contributor.author
Fischer, Anna
dc.contributor.author
Dau, Holger
dc.date.accessioned
2018-06-08T03:16:28Z
dc.date.available
2014-03-11
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14823
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19012
dc.description.abstract
In the sustainable production of non-fossil fuels, water oxidation is pivotal.
Development of efficient catalysts based on manganese is desirable because
this element is earth-abundant, inexpensive, and largely non-toxic. We report
an electrodeposited Mn oxide (MnCat) that catalyzes electrochemical water
oxidation at neutral pH at rates that approach the level needed for direct
coupling to photoactive materials. By choice of the voltage protocol we could
switch between electrodeposition of inactive Mn oxides (deposition at constant
anodic potentials) and synthesis of the active MnCat (deposition by voltage-
cycling protocols). Electron microscopy reveals that the MnCat consists of
nanoparticles (100 nm) with complex fine-structure. X-ray spectroscopy reveals
that the amorphous MnCat resembles the biological paragon, the water-splitting
Mn4Ca complex of photosynthesis, with respect to mean Mn oxidation state (ca.
+3.8 in the MnCat) and central structural motifs. Yet the MnCat functions
without calcium or other bivalent ions. Comparing the MnCat with
electrodeposited Mn oxides inactive in water oxidation, we identify
characteristics that likely are crucial for catalytic activity. In both
inactive Mn oxides and active ones (MnCat), extensive di-μ-oxo bridging
between Mn ions is observed. However in the MnCat, the voltage-cycling
protocol resulted in formation of MnIII sites and prevented formation of well-
ordered and unreactive MnIVO2. Structure–function relations in Mn-based water-
oxidation catalysts and strategies to design catalytically active Mn-based
materials are discussed. Knowledge-guided performance optimization of the
MnCat could pave the road for its technological use.
en
dc.rights.uri
http://creativecommons.org/licenses/by/2.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Electrosynthesis, functional, and structural characterization of a water-
oxidizing manganese oxide
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Energy & Environmental Science. - 5 (2012), 5, S. 7081-7089
dc.identifier.sepid
24273
dcterms.bibliographicCitation.doi
10.1039/c2ee21191b
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1039/c2ee21191b
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000019861
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004317
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1754-5692