dc.contributor.author
Schmid, Martina
dc.contributor.author
Klaer, J.
dc.contributor.author
Klenk, R.
dc.contributor.author
Topič, M.
dc.contributor.author
Krč, J.
dc.date.accessioned
2018-06-08T03:13:05Z
dc.date.available
2015-10-26T09:38:00.761Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14701
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18891
dc.description.abstract
Ultra-thin solar cells on transparent back contacts constitute the basis for
highly efficient tandem solar devices which can surpass the single cell
efficiency limit. The material reduction related to ultra-thin high efficiency
devices additionally lowers the price. Despite the fact that they are ultra-
thin the absorbers still have to remain optically thick and therefore require
adequate light management. A promising approach for enhanced absorption is
plasmonic scattering from metal nanoparticles. In this paper we discuss the
experimental incorporation of Ag nanoparticles in ultra-thin wide-gap
chalcopyrite solar cells on transparent back contacts. A 6.9% efficient 500 nm
Cu(In,Ga)S2 solar cell on In2O3:Mo (at this point without nanoparticles) is
the starting point. For the predicted optimum design of including particles at
the rear side the stability of the nanostructures integrated in the back
contact is investigated in detail. As a first step towards proof-of-concept,
absorption enhancement from the nanoparticles included in the complete solar
cell is experimentally shown in optical properties.
en
dc.rights.uri
http://www.elsevier.com/about/open-access/green-open-access
dc.subject
Copper indidum gallium disulfide
dc.subject
Ultra thin films
dc.subject
Transparent back contact
dc.subject
Tandem solar cell
dc.subject
Plasmonic absorption enhancement
dc.subject
Nanoparticle stability
dc.subject
Rapid thermal processing
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Stability of plasmonic metal nanoparticles integrated in the back contact of
ultra-thin Cu(In,Ga)S2 solar cells
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Thin Solid Films. - 527 (2013), S. 308-313
dc.identifier.sepid
34223
dcterms.bibliographicCitation.doi
10.1016/j.tsf.2012.12.023
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1016/j.tsf.2012.12.023
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000023340
refubium.note.author
Bei der PDF-Datei handelt es sich um eine Manuskriptversion des Artikels.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005569
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
00406090