dc.contributor.author
Zherebtsov, S.
dc.contributor.author
Süßmann, F.
dc.contributor.author
Peltz, C.
dc.contributor.author
Plenge, Jürgen
dc.contributor.author
Betsch, K. J.
dc.contributor.author
Znakovskaya, I.
dc.contributor.author
Alnaser, A. S.
dc.contributor.author
Johnson, N. G.
dc.contributor.author
Kübel, M.
dc.contributor.author
Horn, A.
dc.contributor.author
Mondes, Valerie Alice
dc.contributor.author
Graf, Christina
dc.contributor.author
Trushin, S. A.
dc.contributor.author
Azzeer, A.
dc.contributor.author
Vrakking, M. J. J.
dc.contributor.author
Paulus, G. G.
dc.contributor.author
Krausz, F.
dc.contributor.author
Rühl, Eckart
dc.contributor.author
Fennel, T.
dc.contributor.author
Kling, M. F.
dc.date.accessioned
2018-06-08T03:09:47Z
dc.date.available
2015-02-02T10:30:22.376Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14601
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18793
dc.description.abstract
Waveform-controlled light fields offer the possibility of manipulating
ultrafast electronic processes on sub-cycle timescales. The optical lightwave
control of the collective electron motion in nanostructured materials is key
to the design of electronic devices operating at up to petahertz frequencies.
We have studied the directional control of the electron emission from 95 nm
diameter SiO2 nanoparticles in few-cycle laser fields with a well-defined
waveform. Projections of the three-dimensional (3D) electron momentum
distributions were obtained via single-shot velocity-map imaging (VMI), where
phase tagging allowed retrieving the laser waveform for each laser shot. The
application of this technique allowed us to efficiently suppress background
contributions in the data and to obtain very accurate information on the
amplitude and phase of the waveform-dependent electron emission. The
experimental data that are obtained for 4 fs pulses centered at 720 nm at
different intensities in the range (1–4) × 1013 W cm−2 are compared to quasi-
classical mean-field Monte-Carlo simulations. The model calculations identify
electron backscattering from the nanoparticle surface in highly dynamical
localized fields as the main process responsible for the energetic electron
emission from the nanoparticles. The local field sensitivity of the electron
emission observed in our studies can serve as a foundation for future research
on propagation effects for larger particles and field-induced material changes
at higher intensities.
en
dc.rights.uri
http://iopscience.iop.org/1367-2630/page/NJP%20copyright%20statement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Carrier - envelope phase-tagged imaging of the controlled electron
acceleration from SiO2 nanospheres in intense few-cycle laser fields
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
New Journal of Physics. - 14 (2012), 7, Artikel Nr. 075010
dc.identifier.sepid
20121
dcterms.bibliographicCitation.doi
10.1088/1367-2630/14/7/075010
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1088/1367-2630/14/7/075010
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000021729
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004446
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1367-2630