dc.contributor.author
Koch, Stefan P.
dc.contributor.author
Hägele, Claudia
dc.contributor.author
Haynes, John-Dylan
dc.contributor.author
Heinz, Andreas
dc.contributor.author
Schlagenhauf, Florian
dc.contributor.author
Sterzer, Philipp
dc.date.accessioned
2018-06-08T03:07:59Z
dc.date.available
2015-05-07T08:23:25.383Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14553
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18745
dc.description.abstract
Functional neuroimaging has provided evidence for altered function of
mesolimbic circuits implicated in reward processing, first and foremost the
ventral striatum, in patients with schizophrenia. While such findings based on
significant group differences in brain activations can provide important
insights into the pathomechanisms of mental disorders, the use of neuroimaging
results from standard univariate statistical analysis for individual diagnosis
has proven difficult. In this proof of concept study, we tested whether the
predictive accuracy for the diagnostic classification of schizophrenia
patients vs. healthy controls could be improved using multivariate pattern
analysis (MVPA) of regional functional magnetic resonance imaging (fMRI)
activation patterns for the anticipation of monetary reward. With a
searchlight MVPA approach using support vector machine classification, we
found that the diagnostic category could be predicted from local activation
patterns in frontal, temporal, occipital and midbrain regions, with a maximal
cluster peak classification accuracy of 93% for the right pallidum. Region-of-
interest based MVPA for the ventral striatum achieved a maximal cluster peak
accuracy of 88%, whereas the classification accuracy on the basis of standard
univariate analysis reached only 75%. Moreover, using support vector
regression we could additionally predict the severity of negative symptoms
from ventral striatal activation patterns. These results show that MVPA can be
used to substantially increase the accuracy of diagnostic classification on
the basis of task-related fMRI signal patterns in a regionally specific way.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
Diagnostic Classification of Schizophrenia Patients on the Basis of Regional
Reward-Related fMRI Signal Patterns
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
PLoS ONE. - 10 (2015), 3, Artikel Nr. e0119089
dcterms.bibliographicCitation.doi
10.1371/journal.pone.0119089
dcterms.bibliographicCitation.url
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119089
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000022388
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004882
dcterms.accessRights.openaire
open access