dc.contributor.author
Bach, Sebastian
dc.contributor.author
Binder, Alexander
dc.contributor.author
Montavon, Grégoire
dc.contributor.author
Klauschen, Frederick
dc.contributor.author
Müller, Klaus-Robert
dc.contributor.author
Samek, Wojciech
dc.date.accessioned
2018-06-08T03:04:14Z
dc.date.available
2015-08-27T11:38:44.748Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14445
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18639
dc.description.abstract
Understanding and interpreting classification decisions of automated image
classification systems is of high value in many applications, as it allows to
verify the reasoning of the system and provides additional information to the
human expert. Although machine learning methods are solving very successfully
a plethora of tasks, they have in most cases the disadvantage of acting as a
black box, not providing any information about what made them arrive at a
particular decision. This work proposes a general solution to the problem of
understanding classification decisions by pixel-wise decomposition of
nonlinear classifiers. We introduce a methodology that allows to visualize the
contributions of single pixels to predictions for kernel-based classifiers
over Bag of Words features and for multilayered neural networks. These pixel
contributions can be visualized as heatmaps and are provided to a human expert
who can intuitively not only verify the validity of the classification
decision, but also focus further analysis on regions of potential interest. We
evaluate our method for classifiers trained on PASCAL VOC 2009 images,
synthetic image data containing geometric shapes, the MNIST handwritten digits
data set and for the pre-trained ImageNet model available as part of the Caffe
open source package.
de
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
PLoS ONE. - 10 (2015), 7, Artikel Nr. e0130140
dcterms.bibliographicCitation.doi
10.1371/journal.pone.0130140
dcterms.bibliographicCitation.url
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000022986
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005319
dcterms.accessRights.openaire
open access