dc.contributor.author
Hübener, Robert
dc.contributor.author
Mari, A.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2018-06-08T02:56:24Z
dc.date.available
2014-03-10T17:29:39.565Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14176
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18373
dc.description.abstract
Matrix product states and their continuous analogues are variational classes
of states that capture quantum many-body systems or quantum fields with low
entanglement; they are at the basis of the density-matrix renormalization
group method and continuous variants thereof. In this work we show that,
generically, N -point functions of arbitrary operators in discrete and
continuous translation invariant matrix product states are completely
characterized by the corresponding two- and three-point functions. Aside from
having important consequences for the structure of correlations in quantum
states with low entanglement, this result provides a new way of reconstructing
unknown states from correlation measurements, e.g., for one-dimensional
continuous systems of cold atoms. We argue that such a relation of correlation
functions may help in devising perturbative approaches to interacting
theories.
de
dc.rights.uri
http://journals.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Wick’s Theorem for Matrix Product States
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 110 (2013), 4, Artikel Nr. 040401
dc.identifier.sepid
32429
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.110.040401
dcterms.bibliographicCitation.url
http://link.aps.org/doi/10.1103/PhysRevLett.110.040401
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019555
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000002989
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007