dc.contributor.author
Aichholzer, Oswin
dc.contributor.author
Asinowski, Andrei
dc.contributor.author
Miltzow, Tillmann
dc.date.accessioned
2018-06-08T02:55:00Z
dc.date.available
2015-04-22T10:22:29.125Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14127
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18324
dc.description.abstract
Let X2k be a set of 2k labeled points in convex position in the plane. We
consider geometric non-intersecting straight-line perfect matchings of X2k.
Two such matchings, M and M′, are disjoint compatible if they do not have
common edges, and no edge of M crosses an edge of M′. Denote by DCMk the graph
whose vertices correspond to such matchings, and two vertices are adjacent if
and only if the corresponding matchings are disjoint compatible. We show that
for each k≥9, the connected components of DCMk form exactly three isomorphism
classes - namely, there is a certain number of isomorphic small components, a
certain number of isomorphic medium components, and one big component. The
number and the structure of small and medium components is determined
precisely.
de
dc.rights.uri
http://www.combinatorics.org/ojs/index.php/eljc/about/editorialPolicies#openAccessPolicy
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme
dc.title
Disjoint Compatibility Graph of Non-Crossing Matchings of Points in Convex
Position
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
The Electronic Journal of Combinatorics. - 22 (2015), 1, Artikel Nr. P1.65
dcterms.bibliographicCitation.url
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p65
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDOCS_document_000000022255
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004802
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1077-8926