dc.contributor.author
Kritten, L.
dc.contributor.author
Butz, A.
dc.contributor.author
Chipperfield, M. P.
dc.contributor.author
Dorf, M.
dc.contributor.author
Dhomse, S.
dc.contributor.author
Hossaini, R.
dc.contributor.author
Oelhaf, H.
dc.contributor.author
Prados-Roman, C.
dc.contributor.author
Wetzel, G.
dc.contributor.author
Pfeilsticker, K.
dc.date.accessioned
2018-06-08T02:53:56Z
dc.date.available
2014-10-27T08:35:10.678Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14092
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18289
dc.description.abstract
The absorption cross section of N2O5, σN2O5(λ, T), which is known from
laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in
(Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however,
points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was
investigated by balloon-borne observations of the relevant trace gases in the
tropical mid-stratosphere. The method relies on the observation of the diurnal
variation of NO2 by limb scanning DOAS (differential optical absorption
spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010),
supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 +
2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least
square fitting of the model result to the NO2 observations. Simulations are
initialised with O3 measured by direct sun observations, the NOy partitioning
from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding –
Balloon-borne version) observations in similar air masses at night-time, and
all other relevant species from simulations of the SLIMCAT (Single Layer
Isentropic Model of Chemistry And Transport) chemical transport model (CTM).
Best agreement between the simulated and observed diurnal increase of NO2 is
found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C
(200–260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260–350 nm),
compared to current recommendations. As a consequence, at 30 km altitude, the
N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar
zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays
more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency
slightly reduces the lifetime (0.2–0.6%) of ozone in the tropical mid- and
upper stratosphere, but not to an extent to be important for global ozone.
en
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/de/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie
dc.title
Constraining the N2O5 UV absorption cross section from spectroscopic trace gas
measurements in the tropical mid-stratosphere
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Atmospheric Chemistry and Physics. - 14 (2014), 18, S. 9555-9566
dcterms.bibliographicCitation.doi
10.5194/acp-14-9555-2014
dcterms.bibliographicCitation.url
http://dx.doi.org/10.5194/acp-14-9555-2014
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDOCS_document_000000021202
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004090
dcterms.accessRights.openaire
open access