dc.contributor.author
Friesdorf, M.
dc.contributor.author
Werner, A. H.
dc.contributor.author
Goihl, M.
dc.contributor.author
Eisert, J.
dc.contributor.author
Brown, W.
dc.date.accessioned
2018-06-08T02:52:30Z
dc.date.available
2016-01-06T10:55:23.257Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14049
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18246
dc.description.abstract
Interacting quantum many-body systems are expected to thermalize, in the sense
that the evolution of local expectation values approaches a stationary value
resembling a thermal ensemble. This intuition is notably contradicted in
systems exhibiting many-body localisation (MBL). In stark contrast to the non-
interacting case of Anderson localisation, the entanglement of states grows
without limit over time, albeit slowly. In this work, we establish a novel
link between quantum information theory and notions of condensed matter
physics, capturing this phenomenon in the Heisenberg picture. We show that the
mere existence of local constants of motion, often taken as the defining
property of MBL, together with a generic spectrum of the Hamiltonian, is
already sufficient to rigorously prove information propagation: these systems
can be used to send a classical bit over arbitrary distances, in that the
impact of a local perturbation can be detected arbitrarily far away. This
counterintuitive result is compatible with and further corroborates the
intuition of a slow entanglement growth following global quenches in MBL
systems. We perform a detailed perturbation analysis of quasi-local constants
of motion and also show that they indeed can be used to construct efficient
spectral tensor networks, as recently suggested. Our results provide a
detailed and at the same time model-independent picture of information
propagation in MBL systems.
en
dc.format.extent
13 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Local constants of motion imply information propagation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
New Journal of Physics. - 17 (2015), November, Artikel Nr. 113054
dcterms.bibliographicCitation.doi
10.1088/1367-2630/17/11/113054
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1088/1367-2630/17/11/113054
refubium.affiliation
Physik
de
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000023685
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005821
dcterms.accessRights.openaire
open access