dc.contributor.author
Larcher, Thomas von
dc.contributor.author
Dörnbrack, Andreas
dc.date.accessioned
2018-06-08T02:52:19Z
dc.date.available
2015-02-13T22:46:08.777Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14040
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18237
dc.description.abstract
We present results of numerical simulations of baroclinic driven flows in the
thermally driven rotating annulus using the immersed boundary method for
modeling of the boundary conditions. The Navier-Stokes equations in the
Boussinesq approximation are solved in the Eulerian flux-form advection scheme
with the geophysical flow solver EULAG as numerical framework.We test our
approach against results of an appropriate laboratory experiment with water as
working fluid and directly aim at the wavy flow regime where complex flows and
regular wave patterns are generally observed but where centrifugal effects and
turbulence is of minor importance. Multivariate statistical methods are used
for analyzing time series of computed temperature data. We, here, present the
outcome of the time series data analysis at particular parameter points, and
specifically analyze a complex wave-wave interaction, and, secondly, a wave
mode switch where the azimuthal wave number changes to the next higher one.
The numerical results are highly consistent with the experimental
observations. That encourage us to focus on our actual goal as the next step,
that is the irregular flow regime found at large rotation rates where the
centrifugal force has an increasing effect on flow states and where multiple
scale flows are generally observed.
en
dc.rights.uri
http://creativecommons.org/licenses/by-nc/3.0/de/
dc.subject
baroclinic driven flows
dc.subject
thermally driven rotating annulus
dc.subject
numerical experiments
dc.subject
immersed boundary method
dc.subject
multivariate analysis technique
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Numerical simulations of baroclinic driven flows in a thermally driven
rotating annulus using the immersed boundary method
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Meteorologische Zeitschrift. - 23 (2015), 6, S. 599-610
dc.identifier.sepid
41792
dcterms.bibliographicCitation.doi
10.1127/metz/2014/0609
dcterms.bibliographicCitation.url
http://www.schweizerbart.de/papers/metz/detail/prepub/84460/Numerical_simulations_of_baroclinic_driven_flows_in_a_thermally_driven_rotating_annulus_using_the_immersed_boundary_method
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000021400
refubium.note.author
Gefördert durch die DFG und den Open Access Publikationsfonds der Freien
Universität Berlin
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004221
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1610-1227