dc.contributor.author
Ketel, Katharina
dc.date.accessioned
2018-06-08T01:30:14Z
dc.date.available
2016-06-15T09:11:54.778Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/13446
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-17644
dc.description
I Table of Content 5 II Zusammenfassung 8 III Summary 10 1 Introduction 11 1.1
Defective PI homeostasis and membrane remodeling might cause X-linked
centronuclear myopathy 11 1.1.1 Exocytic membrane transport is counterbalanced
by retrograde traffic 11 1.1.2 Phosphoinositides determine membrane identity
12 1.2 Membrane traffic is regulated by phosphoinositides 15 1.2.1
Phosphoinositides serve as spatio-temporal landmarks 15 1.2.2 PI(4,5)P2-to-
PI(3)P conversion in endocytic membrane traffic 16 1.2.3 Endosomal sorting
occurs via tubular cargo-enriched subdomains 17 1.2.4 Exocyst tethering in
endosomal exocytosis is regulated by endosomal and cell surface determinants
20 1.3 Myotubularins are a family of PI 3-phosphatases 22 1.3.1 MTM1 regulates
endosomal PI(3)P turnover and membrane dynamics 23 1.3.2 Other myotubularin
family members contribute to endosomal PI(3)P turnover
………………………………………………………………………………...24 1.4 Endosomal PI(4)P is synthesized by
type II PI 4-kinases 26 1.5 Aims of this study 27 2 Material and methods 28
2.1 Materials 28 2.1.1 Chemicals 28 2.1.2 Buffers, Media and Solutions 28
2.1.3 DNA Oligonucleotides 31 2.1.4 Small interference RNA Oligos 31 2.1.5
Plasmid vectors 32 2.1.6 Molecular weight standards 34 2.1.7 Antibodies 34
2.1.8 Bacterial strains 36 2.1.9 Eukaryotic cell lines 36 2.1.10 Enzymes 37
2.1.11 Molecular biology kits 37 2.1.12 Supplier 37 2.2 Molecular biology
methods 39 2.2.1 Plasmid construction 39 2.2.2 Preparation of complementary
DNA (cDNA) libraries 39 2.2.3 Polymerase chain reaction (PCR) 40 2.2.4
Analytical agarose gel electrophoresis 42 2.2.5 Purification of DNA from
agarose gels and PCR 42 2.2.6 Restriction digest 42 2.2.7 Integration of PCR
products into linearized vector backbones 43 2.2.8 Preparation of chemically
competent E.coli 43 2.2.9 Transformation of chemically competent E.coli 44
2.2.10 Isolation of DNA from bacterial cultures 44 2.2.11 Measurement of DNA
concentrations 44 2.2.12 Sequencing 45 2.3 Cell biological methods 45 2.3.1
Cell culture 45 2.3.2 Plasmid Transfection 46 2.3.3 siRNA Transfection 46
2.3.4 Immunocytochemistry 47 2.3.5 Transferrin and EGF uptake assays 48 2.3.6
Autophagy assay 50 2.3.7 Cholera toxin uptake 51 2.3.8 Consecutive secretion
assay 51 2.3.9 Elevation of PI(3)P and PI(4)P by PIP/AM treatment 51 2.3.10
Inhibition of Vps34 by VPS34-IN1 treatment 52 2.3.11 Fluorescence microscopy
53 2.3.12 Flow cytometry 55 2.3.13 Statistical analysis 55 2.4 Biochemical
methods 56 2.4.1 Expression of recombinant proteins in E. coli 56 2.4.2
Purification of His6-tagged MTM1 fragment expressed in E. coli for subsequent
antibody purification 56 2.4.3 Affinity purification of polyclonal
MTM1antibody from serum 57 2.4.4 Preparation of cell extracts from mammalian
cell cultures 58 2.4.5 Determination of protein concentration using Bradford
assay 59 2.4.6 Sodiumdodecylsulfate polyacrylamide gel electrophoresis (SDS-
PAGE) 59 2.4.7 Immunoblotting 60 2.4.8 Membrane fractionation 61 2.4.9 Co-
Immunoprecipitation 61 3 Results 62 3.1 Exocytosis from endosomes is impaired
in XLCNM patient cells 62 3.1.1 β1-integrin accumulates in late and recycling
endosomes upon loss of MTM1 ………………………………………………………………………………...62 3.1.2 Impaired
cargo exit from endosomes due to defective exocytosis 64 3.2 Tf exocytosis
from endosomes requires MTM1-mediated PI(3)P hydrolysis 66 3.2.1 The
subcellular distribution of TfR is altered upon loss of MTM1 68 3.2.2
Endosomal trafficking and cargo sorting in MTM1-depleted cells 71 3.2.3 Other
Myotubularin family members in TfR exocytosis 73 3.3 Endosomal accumulation of
PI(3)P and PI(3)P effector proteins inhibits exocytosis from endosomes 75
3.3.1 Sub-plasma membrane early and recycling endosomes accumulate upon loss
of MTM1 ………………………………………………………………………………...75 3.3.2 MTM1 localizes to early and
recycling endosomes 79 3.3.3 PI(3)P accumulates on endosomes in MTM1-depleted
cells 80 3.3.4 PI(3)P levels can be manipulated by genetic and pharmacological
tools 83 3.4 PI(3)P-to-PI(4)P conversion is required for exocyst-dependent
endosomal exocytosis 88 3.4.1 Exocytic vesicles acquire PI(4)P before plasma
membrane fusion 88 3.4.2 PI4K2α and exocyst associate and are required for
exocytosis 90 3.4.3 Rab11 is required for endosomal exocyst localization 93
3.4.4 Exocyst recruitment to endosomes depends on PI4K2α and PI(4)P 95 3.4.5
PI4K2α-mediated MTM1 recruitment to endosomes initiates
PI(3)P-dephosphorylation 95 4 Discussion 100 4.1 Regulation of endosomal
PI(3)P and PI(4)P is tightly coupled 101 4.1.1 Endosomal PI(3)P levels are
balanced by 3’-metabolizing enzymes 101 4.1.2 Membrane recruitment of MTM1 is
regulated by lipid and protein content 103 4.1.3 PI(3)P and PI(3,5)P2 are
lipid substrates of MTM1 104 4.1.4 PI4K2α-dependent PI(4)P synthesis defines
endosomal subdomains for cargo sorting ……………………………………………………………………………….105
4.1.5 PI(3)P turnover regulates endosomal tubulation and cargo sorting 108 4.2
PI(3)P-to-PI(4)P conversion regulates endosomal recycling 109 4.2.1 PI
conversion in endosomal exocytosis parallels switching of the Rab identity
……………………………………………………………………………….109 4.2.2 Regulation of the exocyst complex by
endosomal and PM determinants 111 4.3 Common features of MTM1 deficiency cause
XLCNM pathologies 111 4.3.1 Late endosomal recycling contributes to
β1-integrin traffic 113 4.4 Outlook 115 5 Bibliography 117 6 Appendix 130 6.1
Appendix A: Abbreviations 130 6.2 Appendix B: Mass spectrometry results 133
6.2.1 MTM1 binding partners identified by mass spectrometry 133 6.2.2 PI4K2α
binding partners identified by mass spectrometry 139 6.3 Appendix C: List of
Figures and Tables 142 6.3.1 Tables 142 6.3.2 Figures 142 6.4 Appendix D:
Primers (DNA oligonucleotides) 143 6.5 Appendix E: Publications 145
dc.description.abstract
Phosphoinositides (PIs) are a minor class of short-lived phospholipids that
serve as crucial signposts of membrane identity. Thereby, PIs full fill
important functions in cell signaling and membrane transport. PI 4-phosphates
such as phosphatitylinositol-4-phosphate (PI(4)P) and
phosphatitylinositol-4,5-bisphosphate (PI(4,5)P2) are enriched at the plasma
membrane (PM), on secretory organelles and lysosomes, while PI 3-phosphates,
i.e. phosphatitylinositol-3-phosphate (PI(3)P), are a hallmark of the
endosomal system. Directional transport between these compartments, thus,
requires regulated PI conversion. However, PI conversion in exit from
PI(3)P-enriched endosomes en route to the PI(4)P- and PI(4,5)P2-positive PM in
endosomal recycling remained unknown. Here, we report that cargo exit from
endosomes requires removal of PI(3)P by the PI(3)P 3-phosphatase myotubularin
1 (MTM1), and concomitant PI(4)P synthesis by PI 4-kinase type II α (PI4K2α).
Loss of MTM1 causes endosomal accumulation of PI(3)P and PI(3)P effector
proteins, i.e. sorting nexins, Kif16b-mediated outward traffic of PI(3)P
containing endosomes and sub-plasmalemmal accumulation of exocytosis-deficient
endosomes. As PI4K2α associates with MTM1 and thereby facilitates membrane
recruitment of MTM1, these phenotypic changes are mimicked by loss of PI4K2α.
The conversion of PI(3)P-to-PI(4)P is paralleled by a switch in Rab GTPase-
identity from early endosomal Rab5 to recycling endosomal Rab11. This
conversion mechanism is driven by coincident detection of Rab GTPase and PI
content as well as by reciprocal interactions among its components, including
the association of exocyst with PI4K2α and PI(4)P, Rab11 and with MTM1. Thus,
distinct recycling endosomal domains, characterized by PI4K2α, its lipid
product PI(4)P, MTM1 and Rab11, are created destined for exocyst recruitment
and subsequent exocyst-dependent fusion with the PM. A similar PI conversion
mechanism involving myotubularin family members may underlie cargo exit from
endosomes towards late endosomes. Importantly, MTM1 depletion and XLCNM-
patient mutations are functionally correlated as patient fibroblast are
exocytosis deficient and accumulate endosomal β1-integrin. Our data, thus,
suggest that defective PI conversion at endosomes may account for the
disturbed muscle morphology and impaired integrin-dependent muscle attachment
in developing muscle fibres in XLCNM-patients. These integrin localization
defects can be reversed by application of a Vps34-specific inhibitor and thus
offer a potential avenue to combat this devastating disease.
de
dc.description.abstract
Phosphoinositide (PI) sind eine seltene Gruppe von kurzlebigen Phospholipiden,
die als Organisationsprinzip von Membranen hervorgetreten sind und
Zellmembranen ihre Identität verleihen. Hierdurch erfüllen sie essentielle
Funktionen in der Signaltransduktion und dem Membrantransport. PI 4-Phosphate
wie Phosphatidylinositol-4-Phosphat (PI(4)P) und
Phosphatidylinositol-4,5-Bisphosphat (PI(4,5)P2) sind an der Plasmamembran
(PM), auf sekretorischen Organellen und Lysosomen angereichert, während PI
3-Phosphate, z.B. Phosphatidylinositol-3-Phosphat (PI(3)P), das
Endomembransystem kennzeichnen. Gerichteter Transport zwischen diesen
Kompartimenten benötigt daher die kontrollierte Konversion von PIs. Dennoch
ist die PI Konversion auf dem Weg von PI(3)P-reichen Endosomen hin zur PI(4)P-
und PI(4,5)P2-angereicherten PM in endosomalem Recycling nur unzureichend
verstanden. In dieser Studie legen wir dar, dass der Austritt von
Cargoproteinen aus Endosomen die Entfernung von PI(3)P durch die PI(3)P
3-Phosphatase Myotubularin 1 (MTM1) benötigt sowie die anschließende Synthese
von PI(4)P durch PI 4-Kinase Typ II α (PI4K2α). Der Verlust von MTM1 führt zur
endosomalen Akkumulation von PI(3)P und PI(3)P-Effektoren, zum Kif16b-
vermittelten auswärtsgerichteten Transport von PI(3)P-reichen Endosomen und
der Akkumulation von Exozytose-defizienten Endosomen unterhalb der PM. Da
PI4K2α mit MTM1 assoziiert und hierdurch die Rekrutierung von MTM1 auf
endosomale Membranen ermöglicht, spiegelt der Verlust von PI4K2α diese
phenotypischen Veränderungen wider. Die Konversion von PI(3)P zu PI(4)P wird
begleited durch einen Wechsel in der Identität der Rab GTPasen. Hierbei wird
der frühe endosomale Marker Rab5 durch den Marker für Recycling-Endosomen,
Rab11, ersetzt. Dieser Konversionsmechanismus wird angetrieben durch die
Koinzidenz-Detektion von Rab GTPasen und PIs sowie durch reziproke
Interaktionen zwischen den Komponenten. Diese beinhalten die Assoziation des
Exozyst-Komplexes mit PI4K2α und PI(4)P, Rab11 und mit MTM1. Hierdurch werden
endosomale Subdomänen für endosomales Recycling geschaffen, die durch PI4K2α,
dessen Lipidprodukt PI(4)P, Rab11 und MTM1 gekennzeichnet sind. Auf diesen
Subdomänen kann der Exozyst-Komplex assembliert werden, in dessen Abhängigkeit
exozytische Vesikel mit der PM fusionieren. Ein ähnlicher PI
Konversionsmechanismus, der Myotubularine beinhaltet, könnte den Austritt von
Cargoproteinen aus frühen Endosomen hin zu späten Endosomen kontrollieren.
Wesentlich hierbei ist, dass der Verlust von MTM1 und XLCNM-assoziierte
Mutationen funktionell stark korrelieren. Fibroblasten von XLCNM-Patienten
zeigen Exozytosedefekte und akkumulieren β1-Integrin in Endosomen. Unsere
Daten legen daher nahe, dass defekte PI Konversion auf Endosomen für die
gestörte Muskelmorphologie und Defizite in der Integrin-basierten
Muskeladhäsion in sich entwickelnden Muskeln von XLCNM Patienten
verantwortlich ist. Diese Misslokalisation von Integrinen kann in Zellkultur
durch die Behandlung mit einem Vps34-spezifischen Inhibitor aufgehoben werden
und stellt dadurch eine Möglichkeit dar, dieser unheilbaren Krankheit entgegen
zu wirken.
de
dc.format.extent
145 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
X-linked centronuclear myopathy
dc.subject
endosomal recycling
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
A phosphoinositide conversion mechanism for exit from endosomes
dc.contributor.contact
katharina.ketel@gmail.com
dc.contributor.inspector
Prof. Markus Wahl
dc.contributor.inspector
Prof. Stefan Sigrist
dc.contributor.firstReferee
Prof. Volker Haucke
dc.contributor.furtherReferee
Prof. Christian Freund
dc.date.accepted
2016-06-06
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000102157-5
dc.title.translated
Ein Mechanismus zur Konversion von Phosphoinositiden im Austritt aus Endosomen
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000102157
refubium.mycore.derivateId
FUDISS_derivate_000000019295
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access