dc.contributor.author
Malow, Marcus
dc.date.accessioned
2018-06-07T15:37:13Z
dc.date.available
2001-06-12T00:00:00.649Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/1336
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-5538
dc.description
Inhalt
Titel
Inhaltsverzeichnis
1
Einleitung
1
2
Theoretische und Methodische Grundlagen
5
2.1
Molekularstrahltechnik
5
2.2
Photoanregung und Photoionisation
9
2.3
Massenspektroskopie
13
2.4
Koinzidenztechniken zur Untersuchung unimolekularer Reaktionen
24
2.5
Methodik zur Untersuchung von Ionen-Molekül-Reaktionen
32
3
Experimenteller Aufbau
39
3.1
Die Reflektron-Koinzidenz-Apparatur
40
3.2
Die PFI-PEPICO-Apparatur
53
3.3
Die Ionen-Molekül-Reaktionen-Apparatur
61
4
Ergebnisse und Diskussion
71
4.1
Kinetische Studien bei BESSY I
72
4.2
Energetische Studien an der ALS
100
4.3
Die Ionen-Molekül-Reaktion von HCl+ mit C2H4
118
5
Zusammenfassung und Ausblick
133
6
Literaturverzeichnis
137
7
Anhang
153
7.1
Summary
153
7.2
Lösungsansatz für die Differentialgleichungen
155
7.3
Abkürzungen
158
7.4
Lebenslauf
161
dc.description.abstract
In dieser Arbeit wurde die Energetik und die Kinetik von unimolekularen
Reaktionen und Ionen-Molekül-Reaktionen in der Gasphase untersucht. Die
unimolekularen Reaktionen sind mit verschiedenen experimentellen Techniken
untersucht worden. Die Reaktionen C2H4+-> C2H2+ \+ H2 und C2D4+ -> C2D2+ \+ D2
sind bei BESSY I mit der Koinzidenzmethode TPEPICO mit
Elektronenflugzeitdiskriminierung in einem
Reflektronflugzeitmassenspektrometer untersucht worden. Als ein wichtiges
Ergebnis dieser Untersuchungen konnte erstmals die Metastabilität dieser
Reaktionen in einem Experiment mit energieselektierten Ionen nachgewiesen
werden. Durch die Analyse der Breakdownkurven sind für beide Reaktionen die
vollständigen k(E)-Kurven erhalten worden. In einem ähnlichen Experiment ist
die H-Abspaltung aus C2H4+ untersucht worden. Diese Reaktion konkurriert in
dem untersuchten Energiebereich mit der H2-Abspaltung und wird bei großen
Photonenenergien der dominierende Reaktionskanal. Für beide Reaktionen konnte
das Verhältnis der Geschwindigkeitskonstanten bestimmt werden. Die
Auftrittsenergie von C2H3+ liegt ca. 80 meV über der von C2H2+. So konnte ein
Beitrag zu der kontrovers diskutierten Frage, ob die Ionen-Molekül-Reaktion
C2H2+ \+ H2 -> CH3+ \+ H + e- ist detailliert besprochen worden. Als wichtiges
Ergebnis dieser Untersuchung ist festzuhalten, daß die 0 K
Dissoziationsschwelle direkt aus den Breakdownkurven abgelesen werden kann.
Zusätzlich wurde auch wieder die H2-Abspaltung aus Ethen untersucht. Weiterhin
sind auch Ionen-Molekül-Reaktionen untersucht worden. Bei der Ionenerzeugung
wurde auf die REMPI-Technik zurückgegriffen, die es erlaubt, bestimmte Ionen
in gut definierten Quantenzuständen zu erzeugen. Auf diesem Wege gelangt man
zu zustandsselektierten HCl+ Ionen im Ionengrundzustand. Die Reaktion dieser
Ionen mit Ethenmolekülen wurde in einer hierfür aufgebauten Apparatur
untersucht, und es konnten verschiedene Reaktionsprodukte nachgewiesen werden.
Als Hauptprodukte wurden C2H2+, C2H3+, C2H4+, sowie C2H5+ identifiziert. Dabei
ist eine deutliche Abhängigkeit der Produktionenverteilung von der
Teilchenzahldichte zu beobachten. Nach der Aufstellung von sechszehn
Reaktionsgleichungen, die die Bildung der Ionen beschreiben, konnten die
entsprechenden Geschwindigkeitszeitgesetze aufgestellt werden. Diese
Differentialgleichungen wurden numerisch gelöst und es ist gelungen,
Geschwindigkeitskonstanten für die Ionen-Molekül-Reaktionen zu erhalten.
de
dc.description.abstract
The investigations described in this work focussed on the energetics and the
kinetics of unimolecular dissociation reactions and ion-molecule reactions in
the gas phase. The studies of the unimolecular reactions have been performed
with the help of various experimental approaches. By using a reflectron time-
of-flight spectrometer at BESSY I in a TPEPICO experiment with electron time-
of-flight discrimination, the metastability of the reactions C2H4+ -> C2D2+ +
D2 was shown for the first time in an experiment with energy selected ions.
The simulation of the breakown curves gives complete k(E)-curves. The H loss
reaction from C2H4+ is studied with a similar method. This reaction competes
with the H2 loss and becomes the most dominant reaction channel at higher
energies. A ratio k1/k2, k1 and k2 being the rate constants for H2 and H loss
respectively, could be obtained from the analysis of the breakdown curves. A
high resolution PFI-PEPICO experiment was performed at the ALS in Berkeley,
California. This method allows the determination of the reaction threshold for
fast dissociation reactions with an accuracy of 1 meV. This accuracy was
demonstrated, amongst others, for the H loss reaction from CH4+. The accurate
threshold is determined by the disappearance energy of the parent ion which
was deduced from the breakdown curves. Slow dissociation reactions were also
investigated by the use of the PFI-PEPICO method. As opposed to the fast
dissociation reactions the breakdown curves of the slow dissociation reactions
have to be discussed in conjunction with their reaction kinetics. Furthermore,
the simulation of the breakdown curves for H2 loss from C2H4+ was possible
only by taking into account the reaction kinetics and energetics as obtained
from the TPEPICO experiment. The ion-molecule reaction of HCl+ with C2H4 was
investigated by the use of an experimental set-up which was designed and built
during this project for that specific purpose. The state selection of the ions
was achieved by using the REMPI technique. In this context state selection
means that the ions are formed in a well defined vibrational state with a very
narrow distribution of rotational states. The main reaction products are
C2H2+, C2H3+, C2H4+ and C2H5+. The ratio of the reaction products varies with
the particle density. By setting up a scheme of sixteen reactions and solving
the differential equations, it was possible to simulate the experimental ratio
of the reaction products with respect to the particle density. Results of this
simulation are sixteen rate constants for their respective reactions.
According to the simulation, the charge-transfer reaction HCl+ + C2H4 -<!-->>
C2H4+ + HCl is the fastest reaction. By shifting the narrow state distribution
of the HCl+ ions, the role of rotational energy in these ion-molecule
reactions was studied. However, the use of this experimental set-up did not
reveal any rotational energy effects. One explanation could be the relatively
high cm-energies at which the reactions are studied. In the future, a
promising approach would be to study the ion-molecule reactions at lower cm-
energies in the meV-range.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
unimolecular reactions
dc.subject
ion-molecule reactions
dc.subject
photodissociation reactions
dc.subject
reaction kinetics and energetics
dc.subject
PEPICO spectroscopy
dc.subject
REMPI spectroscopy
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Unimolekulare Reaktionen und Ionen-Molekül-Reaktionen von energie- und
zustandsselektierten Ionen
dc.contributor.firstReferee
Priv. Doz. Dr. Karl-Michael Weitzel
dc.contributor.furtherReferee
Prof. Dr. Helmut Baumgärtel
dc.date.accepted
2001-05-04
dc.date.embargoEnd
2001-06-19
dc.identifier.urn
urn:nbn:de:kobv:188-2001000950
dc.title.translated
Unimolecular reactions and ion-molecule reactions of energy and state selected
ions
en
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000000405
refubium.mycore.transfer
http://www.diss.fu-berlin.de/2001/95/
refubium.mycore.derivateId
FUDISS_derivate_000000000405
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access