dc.contributor.author
Wenemoser, Danielle
dc.date.accessioned
2018-06-08T00:04:59Z
dc.date.available
2012-07-02T15:04:44.545Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/11424
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-15622
dc.description
1
Introduction.........................................................................................................................1
1.1 Regeneration and stem
cells...................................................................................................................1
1.1.1 Regeneration is a common phenomenon throughout the animal
kingdom........................................................1 1.1.2
Different modes of regeneration
exist..................................................................................................................2
1.1.3 Stem cells as the source for new tissue
formation...............................................................................................2
1.2 Regeneration in the planarian Schmidtea
mediterranea........................................................................4
1.2.1 Planarians show remarkable regenerative
abilities.............................................................................................4
1.2.2 Planarian
biology.................................................................................................................................................5
1.2.3 Planarian regeneration relies on a population of adult stem cells
......................................................................6 1.3
Genes and signaling pathways that are implicated in regeneration and wound-
healing.......................9 1.3.1 Gene expression changes associated with
wound-
healing..................................................................................9
1.3.2 Regeneration in vertebrate model
organisms......................................................................................................9
1.3.3 Transcriptional profiling of liver
regeneration....................................................................................................10
1.4 Aim of this
work...................................................................................................................................11
2 Materials and
Methods.......................................................................................................13
2.1
Materials..............................................................................................................................................13
2.1.1 Organisms
.........................................................................................................................................................13
2.1.2 Plasmids, Oligonucleotides and
Clones..............................................................................................................13
2.1.3
Chemicals..........................................................................................................................................................15
2.1.4
Media.................................................................................................................................................................15
2.1.5 Buffer and
Solutions..........................................................................................................................................16
2.1.6
Equipment.........................................................................................................................................................20
2.2
Methods...............................................................................................................................................21
2.2.1 Animals and animal
handling.............................................................................................................................21
2.2.2 Amputation
procedure......................................................................................................................................21
2.2.3 Cycloheximide
treatment..................................................................................................................................21
2.2.4 Exposure to
g-irradiation...................................................................................................................................21
2.2.5 Total RNA
isolation............................................................................................................................................21
2.2.6 Gene
cloning......................................................................................................................................................22
2.2.7 RNAi by
feeding.................................................................................................................................................25
2.2.8
Histology............................................................................................................................................................25
2.2.9 Cell
isolation......................................................................................................................................................28
2.2.10 Flow
cytometry................................................................................................................................................29
2.2.11 RNA probe
synthesis........................................................................................................................................29
2.2.12 Quantitative Real- Time RT-PCR (qRT-
PCR).......................................................................................................30
2.2.13 Data analyses for
imaging................................................................................................................................30
2.2.14 Microarray
experiment....................................................................................................................................30
2.2.15 NanoString
experiments..................................................................................................................................31
2.2.16 Phylogenetic
analyses......................................................................................................................................31
3
Results................................................................................................................................33
3.1 Planarian regeneration involves distinct stem cell responses to wounding
and tissue absence .........33 3.1.1 Neoblasts respond to wounding in a
widespread first mitotic peak and a second localized mitotic peak
...........33 3.1.2 The magnitude of the first mitotic peak depends on wound
size.....................................................................35
3.1.3 The signal that causes the first mitotic peak spreads from the wound
site......................................................37 3.1.4 The signal
that causes the first mitotic peak acts mainly on the G2/M
transition............................................37 3.1.5 The localized
increase in mitoses at the wound site during the second peak is specific to
loss of tissue............39 3.1.6 Neoblasts accumulate at the wound site
during the mitotic
minimum.............................................................41 3.1.7
Loss of tissue induces neoblast migration to wound
sites.................................................................................42
3.1.8 The second mitotic peak is accompanied by neoblast
differentiation...............................................................42
3.1.9 The neoblast wound-response assay as a paradigm to study stem cell-
mediated regeneration......................46 3.2 A gene regulatory network
that governs regeneration initiation in
planarians....................................48 3.2.1 A microarray designed
to identify a wound response program associated with regeneration initiation
in
planarians...............................................................................................................................................................48
3.2.2 Immediate early genes are expressed at wound sites within 30min
following injury in a translation-independent
manner................................................................................................................................50
3.2.3 A late wave of gene expression is comprised of genes encoding patterning
factors and mitogens..................55 3.2.4 Co-expression of immediate
early genes with late wave genes suggests a functional
relationship..................58 3.2.5 A microarray study identifies wound-
induced genes that are specifically upregulated in neoblasts and their
immediate
descendants.............................................................................................................................................59
3.2.6 Multiplex expression analyses identify five different groups of wound-
induced genes....................................61 3.2.7 Immediate early
genes are required for wound-induced gene
expression.......................................................63 3.2.8
Identification of factors that regulate wound-induced gene
expression...........................................................65 3.3
Smed-runt1 expression in planarian neoblasts following wounding is required
for regeneration of neuronal
structures.....................................................................................................................................70
3.3.1 Smed-runt1 expression is specific to wounding and is required for
photoreceptor formation.........................70 3.3.2 Gene expression
analysis reveals a role for Smed-runt1 in neuronal lineage
commitment..............................73 4
Discussion...........................................................................................................................77
4.1 Wounding and amputation involve distinct responses in planarian
neoblasts.....................................77 4.1.1 The response to wounds
and the first mitotic peak
.........................................................................................78
4.1.2 The response to missing tissue and the second mitotic
peak...........................................................................78
4.2 A transcriptional network that is associated with planarian regeneration
initiation...........................80 4.2.1 Two temporally and functionally
distinct waves of wound-induced immediate early gene expression are observed
at all
wounds..............................................................................................................................................81
4.2.3 Late waves of wound-induced gene expression are induced by all types of
wounds and include factors that are required for proper patterning during
regeneration.............................................................................................82
4.2.4 Immediate early genes are required for normal wound-induced expression
of late wave genes.....................83 4.2.5 A planarian homolog of SRF is
required for wound-induced gene expression in
neoblasts..............................83 4.3 Smed-runt1 is a Runt
transcription factor that acts in planarian neoblasts following wounding and
is required for proper regeneration of neuronal
structures.........................................................................................................84
5 Abstract /
Zusammenfassung..............................................................................................87
5.1 Abstract 87 5.2 Zusammenfassung 88 6
References..........................................................................................................................89
7
Publications......................................................................................................................105
8
Appendix..........................................................................................................................107
8.1
Abbreviations......................................................................................................................................................107
8.2 List of genes that were significantly upregulated in the differentiated
tissue following wounding as determined by microarray
analysis..............................................................................................................................................109
8.3 List of genes for which wound-induced expression patterns were determined
by in situ
hybridization..................................................................................................................................................118
8.4 List of genes that were significantly upregulated in neoblasts and/or
their descendents following wounding as determined by microarray
analysis...........................................................................................................................120
8.5
Erklärung............................................................................................................................................................123
Acknowledgements.............................................................................................................125
dc.description.abstract
Regeneration requires signaling from a wound site for detection of the wound,
and a mechanism that determines the nature of the injury to specify the
appropriate regenerative response. Schmidtea mediterranea planarians are able
to regenerate from essentially any type of injury. They represent an emerging
model organism for the study of regeneration and stem cell regulation. The
first part of my thesis focuses on identification of cellular changes in
planarian stem cells—neoblasts—during regeneration initiation. Neoblasts
divide during two spatially and temporally distinct mitotic waves following
tissue removal. Prior to the second mitotic wave, neoblasts were recruited to
wound sites, and subsequently induced to differentiate, but only at wounds
that were associated with loss of tissue. This indicates that separate stem
cell responses exist following wounding that distinguish between simple injury
and loss of tissue. The second part of my thesis identifies a transcriptional
network that is associated with regeneration initiation in planarians.
Wounding induces two temporally and functionally distinct waves of immediate
early gene expression that do not require de novo protein synthesis. Some of
the products from the first immediate early gene wave, such as c-fos, then act
to induce genes of the late, translation-sensitive wave of wound-induced gene
expresseion, some of which are required for patterning during regeneration. A
homolog of Serum response factor (SRF) is required for wound-induced induction
of genes that are specifically expressed in neoblasts, which is consistent
with findings in mouse models during liver regeneration, suggesting that
conserved mechanisms may exist to induce regenerative events in different
species. Smed-runt1, a planarian homolog of Runt transcription factors, which
have a evolutionary conserved role in cell fate specification, is expressed
specifically in planarian neoblasts following wounding. Inhibition of Smed-
runt1 function, using RNA interference, leads to aberrant nervous system
regeneration. Gene expression analysis on such animals indicates that Smed-
runt1 acts early following wounding in neoblasts to regulate expression of
genes that encode developmentally important factors relevant to nervous system
formation in other organisms.
de
dc.description.abstract
Zur Regeneration benötigt es Signale, die von der Wunde ausgesendet werden und
die der Erkennung der Wundstelle dienen. Ausserdem bedarf es eines
Mechanismus, der die Art der Verwundung identifiziert, um die angebrachten
regenerativen Schritte einzuleiten. Planarien der Gattung Schmidtea
mediterranea, können sich von nahezu jeglicher Art der Verwundung regenerieren
und sind ein zunehmend anerkannter Modelorganismus zur Erforschung von
Regeneration und Stammzellregulation. Der erste Teil meiner Doktorarbeit
konzentriert sich auf die Charakterisierung der zellbiologischen
Veränderungen, die in den Neoblasten, den Stammzellen von Planarien, während
der ersten regenerativen Ereignisse vorgehen. Nach der Entfernung von Gewebe,
findet die Zellteilung der Neoblasten in zwei zeitlich und räumlich
unterschiedlichen Wellen statt. Vor Beginn der zweiten Teilungswelle, werden
Neoblasten zur Stelle der Verwundung rekrutiert und anschliessend ihre
Differenzierung induziert. Dies geschieht jedoch nur, wenn die Verwundung
Entfernung von Gewebe involvierte. Dies weist darauf hin, dass
unterschiedliche Wundantworten der Stammzellen existieren, die zwischen
einfacher Verwundung und Gewebsverlust unterscheiden. Der zweite Teil meiner
Doktorarbeit, charakterisiert ein transkriptionelles Netzwerk, das mit den
ersten regenerativen Ereignissen verknüpft ist. Verwundung induziert die
Expression von zwei zeitlich und funktionell unterschiedlichen Wellen von
“immediate early” Genen. Ein Vorgang, der unabhängig von de novo
Proteinsynthese ist. Einige der Produkte der ersten “immediate early”
Genexpressionswelle, zum Beispiel c-fos, aktivieren die Expression der späten
Gene. Expression der späten Gene ist abhänging von de novo Proteinsynthese.
Einige Vertreter dieser Gruppe spielen eine wichtige Rolle in der Regeneration
der korrekten Strukturen. Ein Homolog von Serum response factor (SRF) wird für
die wund-induzierte Genexpression in Neoblasten benötigt; ein ähnlicher
Effekt, der auch während der Leberregeneration von Mäusen beobachtet wurde,
was darauf hindeutet, dass konservierte Mechanismen existieren könnten, die
Regenerationsvorgänge in verschiedenen Spezies induzieren. Smed-runt1, ist ein
Homolog von Runt Transkriptionsfaktoren in Planarien, die eine evolutionär
konservierte Rolle in der Spezifizierung von Zellschicksalen spielen. Nach
Verwundung wird Smed-runt1 ausschliesslich in Neoblasten exprimiert.
Inhibierung der Funktion von Smedrunt1 durch RNA Interferenz, führt zur
abnormalen Regeneration von neuronalen Strukturen. Genexpressionsanalyse
solcher Tiere deutet darauf hin, dass Smed-runt1 zu einem frühen Zeitpunkt
nach Verwundung in Neoblasten aktiv ist, und die Expression von Genen
reguliert, die wichtig für die Entwicklung neuronaler Strukturen in anderen
Organismen sind.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie
dc.title
Identification of mechanisms that govern regeneration initiation, using the
planarian Schmidtea mediterranea as a model
dc.contributor.inspector
Prof. Dr. Pflueger, Prof. Dr. Sigrist
dc.contributor.firstReferee
Prof. Dr. Peter Reddien
dc.contributor.furtherReferee
Prof. Dr. Constanze Scharff
dc.date.accepted
2011-04-14
dc.date.embargoEnd
2012-07-01
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000024627-3
dc.title.translated
Identifizierung von Mechanismen, die die Initiation von
Regenerationsvorgaengen kontrollieren, unter Verwendung der Planarienart
Schmidtea mediterranea
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000024627
refubium.mycore.derivateId
FUDISS_derivate_000000009857
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access