dc.contributor.author
Milbredt, Olaf
dc.date.accessioned
2018-06-07T23:32:57Z
dc.date.available
2008-08-07T10:26:47.486Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/10621
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14819
dc.description
0 Introduction 0.1 Geometric differential equations 0.2 Unified Theories 0.3
Membranes 0.4 Main results 0.5 Thesis overview 1 Membrane equation 1.1
Notations 1.2 Geometry of immersions 1.3 Reduction 2 Existence and Uniqueness
for Hyperbolic Equations of Second Order 2.1 Uniformly local Sobolev spaces
2.2 Linear Equation 2.3 Quasilinear Equation 2.4 Spatially local energy
estimates 3 Minkowski space 3.1 Special graph representation 3.2 Solutions for
fixed coordinates 3.3 Gluing local solutions 4 Generalization to a Lorentzian
manifold 4.1 Special coordinates 4.2 Special graph representation 4.3
Solutions for fixed coordinates 4.4 Gluing local solutions 5 Prescribed
initial lapse and shift 5.1 Existence and uniqueness 5.2 Construction of a
reparametrization 6 Main results 6.1 Existence 6.2 Uniqueness A Proofs of the
statements in section 2.3 B Matrix computations Bibliography
dc.description.abstract
We show existence and uniqueness for timelike minimal submanifolds in ambient
Lorentz manifolds admitting a time function. The initial value formulation
introduced and the conditions imposed on the initial data are given in purely
geometric terms.
de
dc.description.abstract
Diese Dissertation behandelt das Anfangswertproblem fuer zeitartige
Mannigfaltigkeiten mit verschwindender mittlerer Kruemmung in einer Lorentz-
Mannigfaltigkeit, die lokal eine Zeitfunktion besitzt. Die Formulierungen des
Problems sowie der Bedingungen sind rein geometrischer Natur.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Cauchy problem
dc.subject
timelike minimal submanifolds
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
The Cauchy problem for membranes
dc.contributor.firstReferee
Huisken, Gerhard
dc.contributor.furtherReferee
Rendall, Alan
dc.date.accepted
2008-07-14
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000004493-8
dc.title.translated
Das Cauchy Problem für Membranen
de
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDISS_thesis_000000004493
refubium.mycore.derivateId
FUDISS_derivate_000000004098
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access