dc.contributor.author
Servin Vences, Martha Rocio
dc.date.accessioned
2018-06-07T23:23:07Z
dc.date.available
2018-03-19T08:31:48.198Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/10412
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14610
dc.description
1 Table of contents iv 2 Abstract viii 3 Abbreviations x 4 List of figures xii
5 Introduction 1 5.1 Articular cartilage organization 2 5.2 Structure of
articular cartilage 3 5.2.1 Zonal organization of the articular cartilage 3
5.2.2 Matrix organization of the articular cartilage 4 5.2.3 Structure,
composition and behavior of articular cartilage 5 5.3 Mechanical environment
of the articular cartilage 7 5.3.1 Compressive forces 8 5.3.2 Tensile forces 9
5.3.3 Shear forces 9 5.4 Mechanisms of chondrocyte mechanotransduction 10
5.4.1 Summary of events during chondrocyte mechanotransduction 10 5.4.2
Intracellular Calcium fluxes induced by mechanical stimulation in chondrocytes
12 5.4.3 Molecules involved in chondrocyte mechanotransduction 12 5.5 Current
status of the study of chondrocyte mechanotransdution 20 5.5.1 Single cell
stimulation with glass pipette indentation 20 5.5.2 Population stimulation
with cyclic and static compression 21 5.5.3 Population stimulation with fluid
flow 23 6 Statement of the problem 24 7 Aim, scope and hypothesis of the study
24 7.1 Significance of the study 25 8 Materials and methods 26 8.1 Materials
26 8.1.1 Chemicals 26 8.1.2 Reagents for cell culture 27 8.1.3 Commercial kits
27 8.1.4 Plasmids 27 8.1.5 Enzymes for molecular biology 28 8.1.6 Enzymes for
dissociation 28 8.1.7 RT-qPCR Primers 28 8.1.8 Buffers and solutions 29 8.1.9
Antibodies 29 8.1.10 Cell culture 30 Cell culture media and dissociation
buffers 30 8.1.11 Electrophysiology equipment 31 8.1.12 Software 31 8.2 Mouse
lines 32 8.3 Methods 32 8.3.1 Molecular biology 32 8.3.2 Cell biology 34 8.3.3
Poly-L-Lysine coating 38 8.3.4 Immunostaining of cultured cells 38 8.3.5
Morphological analysis of chondrocytes and dedifferentiated cells 38 8.3.6
Electrophysiology 39 8.3.7 Calcium imaging 41 8.3.8 Second Harmonic Generation
imaging of murine cartilage 42 8.3.9 Statistical analysis 43 9 Results 45 9.1
Establishment of a cellular model to study mechanoelectrical transduction in
chondrocytes 45 9.1.1 Morphological characterization of chondrocytes and
dedifferentiated cells 45 9.1.2 Gene expression in chondrocytes and
dedifferentiated cells 47 9.1.3 Protein characterization of chondrocytes and
dedifferentiated cells 48 9.1.4 Cellular redifferentiation by alginate
encapsulation 49 9.2 Assessing mechanoelectrical transduction in chondrocytes
51 9.2.1 Using pillar arrays as force transducers 51 9.2.2 Using High-Speed
Pressure Clamp to stretch the plasma membrane 55 9.3 Identifying
mechanosensitive ion channels in chondrocytes 57 9.3.1 Molecules involved in
chondrocyte mechanoelectrical transduction 57 9.3.2 Confirming the functional
activation of TRPV4 and Piezo1 in mouse articular chondrocytes 58 9.3.3
Assessing mechanoelectrical transduction in chondrocytes lacking the TRPV4 ion
channel 59 9.3.4 Assessing mechanoelectrical transduction in chondrocytes with
reduced expression of Piezo1 (knockdown experiments) 62 9.3.5
Mechanoelectrical response of chondrocytes cells with reduced expression of
Piezo1 assessed by membrane stretch 64 9.3.6 Assessing mechanoelectrical
transduction of Trpv4-/--Piezo1 knockdown chondrocytes with substrate
deflection and membrane stretch 66 9.4 Investigation of Piezo1 and TRPV4
mechanosensitivity in a heterologous expression system 67 9.4.1 Piezo1 is
activated by different mechanical stimuli 68 9.4.2 TRPV4 is activated by cell-
substrate deflection 69 9.4.3 Role of the actin cytoskeleton in the TRPV4
response to substrate deflections 73 9.4.4 PLA2 is not involved in the TRPV4
response to substrate deflections 74 9.5 Effect of TRPV4 on the structure of
the cartilage extracellular matrix 76 10 Discussion 80 10.1 Chondrocytes vs.
dedifferentiated cells, importance of using the right cells 80 10.2 Importance
of mechanical activation techniques to elucidate the activation mode of
mechanosensitive ion channels 80 10.3 Piezo1 is involved in the chondrocyte
response to membrane stretch 82 10.4 Piezo1 and TRPV4 mediate the response to
substrate deflection in chondrocytes 83 10.5 Mechanosensitive ion channels are
functionally expressed in chondrocytes 86 10.5.1 Expression of TRPV4 and
Piezo1 in chondrocytes 87 10.5.2 Ablation of the channels impairs the
mechanosensitive currents in chondrocytes 88 10.5.3 Heterologous expression of
TRPV4 and Piezo1 give rise to mechanosensitive current activation. 89 About
TRPV4 mechanosensitivity 89 About Piezo1 mechanosensitivity 93 11 Conclusions
95 12 References 96 13 Acknowledgments 108 14 Publication 109
dc.description.abstract
Articular cartilage is a protective tissue that covers joints with large
degree of movement such as knees and elbows. Its main function is to support
and distribute forces generated during body locomotion. Cartilage is comprised
of individual chondrocytes that are embedded in a specialized matrix formed by
collagens, proteoglycans, other non-collagenous proteins and water.
Chondrocytes experience a complex mechanical environment and are able to
respond to changes in mechanical loads in order to maintain cartilage
homeostasis by inducing synthesis or degradation of matrix proteins. It has
been proposed that mechanically-gated ion channels are of functional
importance in chondrocyte mechanotransduction. Application of mechanical load
in chondrocytes induce protein synthesis that is inhibited in the presence of
gadolinium, a non-specific inhibitor of mechanically-gated ion channels.
However, there was no direct evidence of mechanically-gated currents in these
cells. Channel-mediated mechanotransduction is known as mechanoelectrical
transduction, and the molecular players mediating this process remained
elusive in chondrocyte biology. The aim of this thesis was to identify and
characterize the mechanosensitive ion channels that are important for
chondrocyte mechanoelectrical transduction. To study this, we used elastomeric
pillar arrays to apply mechanical stimuli at the cell-substrate interface
while clamping the membrane potential of murine chondrocytes in whole-cell
configuration. We found that TRPV4 and Piezo1 channels contribute to currents
produced by stimuli applied at the cell-substrate interface. In addition, only
Piezo1 contributes to the stretch-activated current in chondrocytes. This is
the first direct demonstration of mechanically-gated ion channel activity in
primary murine chondrocytes. To study the activation mechanism of Piezo1 and
TRPV4, the channels were overexpressed in HEK-293 cells. As observed before,
Piezo1 is activated by membrane stretch, cellular indentation and substrate
deflection. In contrast, TRPV4 was only slightly activated by membrane
stretch, was not activated by cellular indentation, but was efficiently
activated by substrate deflections. These results suggest that TRPV4 requires
cellular components to efficiently transfer the force to gate the channel.
Additionally, the data demonstrate that mechanical stimuli applied to distinct
membrane compartments are transduced by separate, but overlapping transduction
pathways.
de
dc.description.abstract
Gelenkknorpel ist ein Schutzgewebe, das Gelenke mit großer Beweglichkeit
bedeckt, wie z.B. Knie und Ellenbogen. Seine Hauptverteilung ist die Dämpfung
und Verteilung von Kräften während der Bewegung des Körpers. Knorpel besteht
aus individuellen Chondrozyten, die in eine spezielle Matrix aus Kollagenen,
Proteoglykanen, anderen nicht-kollagenen Proteinen und Wasser eingebettet
sind. Chondrozyten befinden sich in einer komplexen mechanischen Umgebung und
können auf unterschiedliche mechanische Belastung reagieren, um ein
Gleichgewicht innerhalb des Knorpels zu erhalten, indem sie die Synthese oder
den Abbau von Matrixproteinen anregen. Es wird vermutet, dass mechanisch
gesteuerte Ionenkanäle eine wichtige Funktion bei der Mechanotransduktion der
Chondrozyten spielen. Durch mechanischen Druck auf Chondrozyten wird
Proteinsynthese induziert, die durch Gadolinium, einen unspezifischen
Inhibitor mechanisch gesteuerter Ionenkanäle, inhibiert wird. Allerdings gab
es bisher keinen Nachweis von mechanisch gesteuerten Strömen in diesen Zellen.
Durch Kanäle gesteuerte Mechanotransduktion ist als mechanoelektrische
Transduktion bekannt, und bisher sind die an diesem Prozess beteiligten
Moleküle in der Biologie der Chondrozyten noch unbekannt. Ziel dieser Arbeit
ist es, die mechanosensitiven Ionenkanäle zu identifizieren und zu
charakterisieren, die eine wichtige Rolle bei der mechanoelektrischen
Transduktion der Chondrozyten spielen. Um dies zu untersuchen, haben wir
elastomere Pillar Arrays verwendet, um mechanische Reize an der Zell-Substrat-
Grenze auszuüben, und dabei Gesamtzell-Ableitungen an den murinen Chondrozyten
vorgenommen. Dabei haben wir herausgefunden, dass TRPV4- und Piezo1- Kanäle zu
Strömen beitragen, die durch Reize an der Zell-Substrat-Grenze ausgelöst
wurden. Darüber hinaus ist nur Piezo1 an dehnungsaktivierten Strömen in
Chondrozyten beteiligt. Damit wurde erstmals mechanisch gesteuerte
Ionenkanalaktivität in primären murinen Chondrozyten gezeigt. Um den
Aktivierungsmechanismus von Piezo1 und TRPV4 zu untersuchen, wurden die Kanäle
in HEK-293 Zellen überexprimiert. Wie vorher beobachtet, wird Piezo1 durch
Dehnung der Membran, Eindellung der Zelle und Substratablenkung aktiviert. Im
Gegensatz dazu wird TRPV4 nur leicht durch Dehnung der Membran, nicht durch
Eindellung der Zelle und sehr gut durch Substratablenkung aktiviert. Diese
Ergebnisse lassen vermuten, dass TRPV4 zelluläre Komponenten benötigt, um das
Signal der Krafteinwirkung zur Öffnung des Kanals weiterzugeben. Diese Daten
zeigen, dass mechanische Reize, die auf bestimmte Membranabschnitte einwirken,
durch unterschiedliche, sich überschneidende Transduktionswege weitergeleitet
werden.
de
dc.format.extent
xiii, 109 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
mechanotransducion
dc.subject
electrophysiology
dc.subject
mechanosensitive ion channels
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::571 Physiologie und verwandte Themen
dc.title
Ion-channel mediated mechanotransduction in chondrocytes
dc.contributor.contact
rservin@scripps.edu
dc.contributor.contact
rocioservin@gmail.com
dc.contributor.inspector
Dr. Marta Maglione
dc.contributor.firstReferee
Prof. Dr. Ursula Koch
dc.contributor.furtherReferee
Prof. Dr. Gary R. Lewin
dc.contributor.furtherReferee
Prof. Dr. Hans-Joachim Pflüger
dc.contributor.furtherReferee
Prof. Dr. Rupert Mutzel
dc.date.accepted
2018-01-12
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000106601-7
dc.title.translated
Ionenkanal-vermittelte Mechanotransduktion in Chondrocytes
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000106601
refubium.mycore.derivateId
FUDISS_derivate_000000023365
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access