dc.contributor.author
Schmedemann, Nico
dc.date.accessioned
2018-06-07T23:16:51Z
dc.date.available
2016-01-22T09:24:49.908Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/10288
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14486
dc.description
1 INTRODUCTION 1 1.1 SIGNIFICANCE OF CHRONO-STRATIGRAPHY AND THE ROLE OF
RADIOMETRIC AGES FOR THE DETERMINATION OF THE GEOLOGIC HISTORY OF PLANETARY
BODIES AND THE HISTORY OF THE SOLAR SYSTEM 1 1.2 SCOPE OF THIS WORK AND
STRUCTURE 7 2 DETAILS ON METHODOLOGY NOT INCLUDED OR REFERENCED IN THE
PRESENTED PAPERS 9 2.1 BRIEF OVERVIEW ON THE GEOLOGY AND ASTRONOMIC RELATION
OF THE INVESTIGATED BODIES 9 2.1.1 Phobos 9 2.1.2 (951) Gaspra 9 2.1.3 (243)
Ida 9 2.1.4 (21) Lutetia 10 2.1.5 (4) Vesta 10 2.1.6 Mimas 10 2.1.7 Iapetus 11
2.2 SCALING ERROR OF PROJECTED IMAGING DATA BETWEEN REFERENCE BODY SURFACE AND
TRUE BODY SURFACE ON IRREGULARLY SHAPED SMALL BODIES 11 2.2.1 Case Ida: 11
2.2.2 Case Gaspra: 12 2.2.3 Case Lutetia: 12 2.2.4 Case Vesta: 12 2.3
APPLICABILITY OF SATURATION OR STANDARD EQUILIBRIUM DISTRIBUTION ON SMALL
BODIES 14 2.3.1 Highest crater frequencies on Vesta – in equilibrium? 16 2.4
DEPENDENCE OF MODEL AGES ON THE SHAPE OF THE PRODUCTION FUNCTION 17 2.4.1 Fit
range > 1 km (reference crater size) 17 2.4.2 Fit range < 1 km (Reference
Crater Size) 18 3 THE AGE OF PHOBOS AND ITS LARGEST CRATER, STICKNEY 21 3.1
INTRODUCTION 21 3.2 METHODOLOGY 23 3.2.1 Measurements of crater size–frequency
distributions 23 3.2.2 Interpretation of crater distributions 23 3.2.3
Randomness analysis 24 3.2.4 Production function 25 3.2.5 Chronology function
27 3.3 RESULTS 29 3.3.1 Average surface to the west of Stickney 29 3.3.2 The
interior of Stickney 31 3.3.3 Spatial randomness analysis 36 3.3.4 Crater
density asymmetry at apex and antapex points of orbital motion 37 3.4 SUMMARY
38 3.5 ACKNOWLEDGMENT 40 4 THE CRATERING RECORD, CHRONOLOGY AND SURFACE AGES
OF (4) VESTA IN COMPARISON TO SMALLER ASTEROIDS AND THE AGES OF HED METEORITES
41 4.1 INTRODUCTION 41 4.2 METHODOLOGY 43 4.2.1 Crater counting 43 4.2.2
Derivation of the crater production functions of asteroids 45 4.2.3 Discussion
of alternative proposed chronology model 55 4.3 RESULTS: CRATER RETENTION AGES
FOR KEY AREAS 59 4.3.1 Surface ages of Ida, Gaspra and Lutetia 60 4.3.2
Surface Ages of Vesta 61 4.3.3 Summary on crater retention ages of key areas
on Vesta 79 4.4 COMPARISON OF VESTAN CRATER RETENTION AGES WITH RADIOMETRIC
39AR-40AR RESET AGES OF HED METEORITES 83 4.5 SUMMARY AND DISCUSSION 85 4.6
ACKNOWLEDGMENTS 89 4.7 APPENDIX - THE CRATERING RECORD, CHRONOLOGY AND SURFACE
AGES OF (4) VESTA IN COMPARISON TO SMALLER ASTEROIDS AND THE AGES OF HED
METEORITES 90 4.7.1 Measurements on Small Asteroids 90 4.7.2 Additional
Information about Counting Areas on Vesta 96 4.7.3 Major Impact Structures on
Vesta (Fig. 4-36, 4-37) 110 5 MORPHOLOGY AND FORMATION AGES OF MID-SIZED POST-
RHEASILVIA CRATERS – GEOLOGY OF QUADRANGLE TUCCIA, VESTA 113 5.1 INTRODUCTION
AND GENERAL GEOLOGIC SETTING OF QUADRANGLE AV-13 113 5.2 METHODOLOGY 115 5.2.1
Database and geologic mapping 115 5.2.2 Analysis of crater size–frequency
distributions (CSFDs) 119 5.2.3 Morphometric measurements 123 5.3 MAPPING
RESULTS 125 5.3.1 Cratered highlands material (ch) 125 5.3.2 Cratered plains
material (cp) 127 5.3.3 Rheasilvia smooth material (Rs) 129 5.3.4 Rheasilvia
ridge-and-groove material (Rrg) 129 5.3.5 Rheasilvia scarp wall material (Rsw)
131 5.3.6 Undifferentiated lobate material (ul) 132 5.3.7 Dark lobate material
(dl) 133 5.3.8 Crater materials (uc, bc, dc, bcr, dcr, ccr) 133 5.3.9 Dark
material (d) 134 5.4 GEOLOGY AND FORMATION AGES OF PROMINENT IMPACT CRATERS IN
AV-13 TUCCIA 135 5.4.1 Geology of Tuccia and Eusebia craters 135 5.4.2 Geology
of Vibidia and Galeria craters 142 5.4.3 Geology of Antonia crater 145 5.5
DISCUSSION 149 5.5.1 The age of Rheasilvia 149 5.5.2 Prominent mid-sized
impact craters 150 5.6 CONCLUSIONS 154 5.7 ACKNOWLEDGMENTS 155 5.8 APPENDIX
SUPPLEMENTARY DATA 156 6 OLIVINE OR IMPACT MELT: NATURE OF THE ‘‘ORANGE’’
MATERIAL ON VESTA FROM DAWN 157 6.1 INTRODUCTION 159 6.2 DATA DESCRIPTION AND
PROCESSING 161 6.2.1 Orbits and resolution of FC and VIR data 161 6.2.2 FC
color images processing 162 6.2.3 Visible and infrared mapping spectrometer
data processing 163 6.3 DATA ANALYSIS 164 6.3.1 FC color ratios 164 6.3.2 VIR
band parameters 165 6.4 DESCRIPTION OF ORANGE MATERIAL 166 6.4.1 Types of
orange material deposits: morphology and color properties 166 6.4.2 Mapping
the distribution of the orange material 178 6.4.3 Formation age of Oppia and
Octavia craters 182 6.5 COMPOSITION OF THE ORANGE MATERIAL 184 6.5.1 Spectral
band parameters 184 6.5.2 Pyroxene chemistry 186 6.5.3 Relationship with HEDs
186 6.5.4 Elemental composition of the orange regions 189 6.6 ORIGIN OF THE
ORANGE MATERIAL 192 6.6.1 Olivine option 192 6.6.2 Metal option 195 6.6.3
Impact melt/shock option 198 6.7 CONCLUSION 203 6.8 ACKNOWLEDGMENTS 206 6.9
APPENDIX A 206 6.9.1 A.1. Details of the VIR data processing 206 6.9.2 A.2.
Crater counting methodology 208 6.9.3 A.3. Crater counting sites description
208 6.10 APPENDIX B. SUPPLEMENTARY MATERIAL 209 7 IMPACT CRATER SIZE –
FREQUENCY DISTRIBUTION ON MIMAS AND THE AGE OF HERSCHEL 214 7.1 INTRODUCTION:
214 7.2 METHODOLOGY 215 7.3 IMAGE DATA AND MEASUREMENT AREAS 218 7.3.1 Image
Data 218 7.3.2 Description of counting areas 218 7.4 MEASUREMENTS 221 7.5
SIZE-FREQUENCY DISTRIBUTION OF POSSIBLE PROJECTILE POPULATIONS IN THE
SATURNIAN SYSTEM 222 7.5.1 Possible Projectiles 223 7.5.2 Derivation of
strength to gravity values by a modified 1/g approach 227 7.5.3 Comparison
between scaled projectile and observed projectile distributions 228 7.5.4
Apex-/Antapex asymmetry not observed 234 7.6 CRATER CHRONOLOGY FUNCTIONS AND
CRATER PRODUCTION FUNCTIONS FOR MIMAS AND IAPETUS 235 7.6.1 Crater Production
Function 235 7.6.2 Crater Chronology Functions 238 7.7 SURFACE AGES OF
MEASURED UNITS ON MIMAS 239 7.8 CONCLUSION 243 7.9 ACKNOWLEDGEMENT 245 7.10
APPENDIX – A - DATA TABLES 246 8 SUMMARY AND OUTLOOK 258 8.1 APPLICABILITY OF
LUNAR-LIKE CRATER PRODUCTION AND CHRONOLOGY FUNCTIONS: 258 8.1.1 Phobos
(chapter 3): 259 8.1.2 Main Belt asteroids (chapters 4, 5 and 6): 259 8.1.3
Mimas (chapter 7): 263 8.2 OUTLOOK: 266 REFERENCES 270 CURRICULUM VITAE I
PUBLICATIONS III
dc.description.abstract
This thesis aims to relate the understanding of the meteoritic bombardment in
the Earth-Moon system to other dynamical regions of our Solar System.
Resulting in a significant improvement in one of the key issues in the field
of planetary sciences: the ability to date planetary surfaces from impact
craters on bodies from the inner Solar System to the asteroid Main Belt and
the giant planet satellites of the outer Solar System. This tool is key in
understanding the geologic history of the investigated bodies since the
terminal phase of planetary accretion about 4 Ga ago until today. The
cratering records of planetary bodies and the related projectile dynamics in
the inner Solar System are relatively well known from vast sets of remote
sensing data of the Moon, Mars and to a lesser degree, Mercury. In the case of
the Moon, absolute calibration of the measured crater frequencies was possible
by radiometric dating of returned lunar rock and soil samples. For bodies in
the asteroid Main Belt and beyond, in the outer Solar System, the smaller sets
of remote sensing data, limitations in observations of projectiles, and
incomplete models of projectile dynamics complicate the interpretation of the
cratering records and thus the understanding of the geologic history of
respective planetary bodies. The work presented in this thesis utilizes the
lunar cratering record and adopts it with some customization for the
investigated planetary bodies with significantly different impact environments
than the Moon. By comparing the predictions of the lunar-like model and the
observed cratering records at different locations in the Solar System (Martian
satellite Phobos, Main Belt asteroids and Saturnian satellites) a significant
increase in knowledge has been achieved about the projectiles’ origin and
their dynamical characteristics. Applying the lunar-like cratering models to
surface areas that are related to major geologic events on the investigated
bodies allowed for the exploration of their individual geologic histories as
well as, partially, their dynamical histories. A comparison of the geologic
histories of the planetary bodies across the Solar System also offers a
possibility to understand the development of the Solar System in many
different aspects. Such aspects are for instance the projectile dynamics and
collisional evolution of small bodies from the late stage planetary accretion
until today. Stratigraphic relationships were used in order to test the lunar-
like models and alternative models of other scientific working groups for
consistency. Results from the Saturnian satellites Mimas and Iapetus, the Main
Belt asteroids Vesta, Lutetia, Ida and Gaspra as well as the Martian satellite
Phobos studied in this work showed that they are consistent with a lunar-like
impact history.
de
dc.description.abstract
Das Ziel dieser Arbeit ist es, das Verständnis des Meteoritenbombardements im
Erde – Mond System in einen Bezug zum Bombardement in anderen Regionen des
Sonnensystems und möglichen Projektilpopulationen zu setzen. Dabei wird die
Methode zur Datierung planetarer Oberflächen durch
Meteoriten¬ein¬schlags¬krater vom inneren Sonnensystem auf die Körper des
Asteroiden¬gür¬tels und die Mon¬de des äußeren Sonnensystems übertragen. Die
vorliegende Arbeit liefert damit einen Beitrag in einem der zentralen
Aufgabenfelder in der Planeto¬lo¬gie. Datierungen der planetaren Oberfläche
sind der Schlüssel zum Verständnis der geologischen Entwicklung der
unter¬such¬ten Körper seit der Endphase der Planetenentstehung vor etwa 4 Ga
bis heute. Die Krater¬ver¬tei¬¬lungen auf den Körpern des inneren
Sonnensystems und die Dynamik der entsprechenden Projektile werden durch die
umfangreichen fernerkundlichen Daten¬sät¬ze von Mond und Mars bereits gut
verstanden. Für den Mond konnten die gemes¬se¬nen Krater¬häu-figkeiten mit
radio¬metrisch datierten Boden- und Gesteins¬proben kali¬briert werden. Für
die Körper außerhalb des inneren Son¬nen¬sys¬tems, ist die Datenlage
schwieriger und Modelle zur Projektilher¬kunft und -¬dy¬na¬mik schei¬nen
unvollständig zu sein, wodurch Interpretationen zur beobachteten
Kra¬ter¬ver¬teilung und zur geologischen Entwicklung der Körper erschwert
werden. Die vorliegende Arbeit nutzt die lunare Kratergrößen -
Häufigkeitsverteilung und passt sie als Model an die individuellen, zum Teil
sehr stark vom Mond abweichenden, Einschlags¬bedingungen der untersuchten
Körper an. Durch den Vergleich der Vorhersagen der mondähnlichen Mo¬delle mit
den beobachteten Kraterverteilungen an verschiedenen Orten innerhalb des
Son¬nen¬sys¬tems (inneres/äußeres Sonnensystem und Asteroidengürtel) konnte
ein deutlich ver¬bes-ser¬tes Verständnis zur Herkunft der Projektile und ihrer
dynamischen Eigenschaften erlangt werden. Die Anwendung mondähnlicher
Kraterverteilungs¬modelle auf wichtigen geo¬lo¬gi¬schen Einhei¬ten erlaubt die
Untersuchung der individuellen geologischen und z.T. dynamischen Ent¬wick¬lung
der betrachteten Körper. Der Vergleich signifikanter geo¬lo¬gischer Ereignisse
der ein¬zelnen planetaren Körper im Sonnensystem lässt auch Rück¬schlüsse auf
dessen Entwicklung als Ganzes zu. Mit Hilfe stratigrafischer Beziehungen
wurden sowohl die mondähnlichen Kraterverteilungsmodelle als auch alternative
Modelle auf ihre jeweilige Konsistenz getestet. Die in der vorliegenden Arbeit
von den Saturnmonden Mimas und Iapetus, den Hauptgürtelasteroiden Vesta,
Lutetia, Ida und Gaspra und dem Marsmond Phobos gewonnenen Ergebnisse sind
konsistent mit einer mondähnlichen Impakt¬geschich¬te.
de
dc.format.extent
xx, 300, XIV Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
crater scaling
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::529 Chronologie
dc.title
On the Chronostratigraphy of Planetary Satellites and Asteroids
dc.contributor.contact
nico.schmedemann@fu-berlin.de
dc.contributor.firstReferee
Prof. Dr. Ralf Jaumann
dc.contributor.furtherReferee
Prof. Dr. Stephan van Gasselt
dc.date.accepted
2015-12-01
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000101149-6
dc.title.subtitle
Absolute Surface Age Determination of Small Planetary Bodies: Scaling the
Lunar Crater Chronology System
dc.title.translated
Über die Chronostratigrafie planetarer Satelliten und Asteroiden
de
dc.title.translatedsubtitle
Absolute Oberflächendatierung von kleinen planetaren Körpern: Skalierung des
lunaren Kraterchronologiesystems
de
refubium.affiliation
Geowissenschaften
de
refubium.mycore.fudocsId
FUDISS_thesis_000000101149
refubium.mycore.derivateId
FUDISS_derivate_000000018538
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access